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Abstract—The increasing complexity of three-dimensional in-
tegrated circuits (3D ICs) poses significant challenges for visually
distinguishing dense networks of embedded traces, hindering
both manual inspection and AI-assisted analysis. The absence
of a standardized trace color scheme further complicates failure
analysis (FA), particularly with the rise of heterogeneous inte-
gration. To address this, we formulate trace coloring as a multi-
objective optimization problem and evaluate seven metaheuristic
color scheme strategies. The proposed Adaptive Elitist Particle
Swarm Optimization (AEPSO) algorithm outperforms all other
methods. It achieves a minimum intra-group color difference of
5.52, surpassing the just-noticeable difference (JND) threshold
of 2.3, ensuring that colors within each group remain easily
distinguishable to the human eye. In addition, we develop a vir-
tual reality (VR) visualization framework to support immersive
spatial inspection of 3D IC layouts.

Index Terms—3D ICs, Color Scheme Optimization, Meta-
heuristic Algorithms, Failure Analysis, Virtual Reality.

I. INTRODUCTION

As semiconductor integration continues to scale in complex-
ity, visualizing and inspecting three-dimensional integrated
circuits (3D ICs) has become increasingly challenging. With
stacked dies, interconnects, and through-silicon vias (TSVs),
engineers require precise color-coded layouts to identify signal
traces and verify connectivity [1].

However, no standardized color scheme currently exists
for 3D IC visualization. Traditional color scheme generation
methods, including histogram-based techniques, clustering al-
gorithms, and neural network methods [2], often fail to ensure
perceptual distinguishability between closely packed or func-
tionally distinct regions. This limitation becomes even more

critical with the adoption of heterogeneous integration, which
adds further complexity to failure analysis (FA) workflows and
extends chip development cycles [3].

In this paper, we present a comparative study of
metaheuristic-based color scheme strategies aimed at max-
imizing perceptual contrast and enhancing trace readabil-
ity in 3D ICs. Among the seven evaluated metaheuristics,
our proposed Adaptive Elitist Particle Swarm Optimization
(AEPSO) consistently outperforms the other six conventional
metaheuristics, achieving the highest overall performance. In
particular, AEPSO yields a minimum intra-group color differ-
ence (∆Emin,intra) of 5.52, significantly surpassing the just-
noticeable difference (JND) threshold of approximately 2.3 [4,
p. 44], thereby ensuring clear perceptual separation within
each color group. Notably, AEPSO provides a 24.6% improve-
ment over the standard Particle Swarm Optimization (PSO),
which represents the best-performing conventional method.
The resulting color scheme is applicable across a range of data
representations, including empirical 3D reconstructions from
layout data, 3D X-ray tomography, and simulated structural
models [5], thereby maintaining visual coherence across both
experimental and design domains.

To facilitate perceptual evaluation, we further develop a
virtual reality (VR) framework for immersive inspection of
optimized 3D IC layouts. This integrated approach supports
more effective FA and has the potential to accelerate design
verification in advanced packaging.
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II. BACKGROUND AND RELATED WORK

A. Color Space

Color space is a vector space with three or more parameters,
representing colors as human perceptions of visible light
(400–700 nm) [6].

Red-Green-Blue (RGB) color space is a classic model
widely used in displays. The standard RGB (sRGB) model
adds gamma correction to reduce device dependency by ad-
dressing nonlinear input-luminance relations [7].

The Commission Internationale de l’Éclairage (CIE) pro-
posed CIE 1931 XYZ space, defining XYZ via a linear RGB
transformation [8]. To improve perceptual uniformity, it later
introduced CIE 1976 L∗u∗v∗ (CIELUV) and CIE 1976 L∗a∗b∗

(CIELAB), both derived through nonlinear transformations of
XYZ [9].

Hue-Chroma-Lightness (HCL) space, or polar LAB, is a
polar form of CIELAB, expressing a∗ and b∗ as hue angle
(H) and chroma (C) [9]:

H = arctan

(
b∗

a∗

)
, C =

√
a∗2 + b∗2 (1)

HCL color space is used in this paper to select color codes,
offering perceptual uniformity and interpretability.

B. Color Difference

Color difference (∆E) quantifies the perceived difference
between two colors. As large differences are less relevant, most
research focuses on small color differences, often using just-
noticeable difference (JND).

The majority of ∆E formulas are based on CIELAB space:
• ∆E∗

ab (CIE76): Uses Euclidean distance in CIELAB.
• ∆E∗

94 (CIE94): Enhances the accuracy of ∆E∗
ab by incor-

porating weighting factors for hue, chroma, and lightness
differences.

• ∆E00 (CIEDE2000): Refines weighting functions to ad-
dress perceptual non-uniformities, particularly in low-
chroma and skin-tone regions. The final calculation is
as follows [10]:

∆E00 =

[(
∆L′

kLSL

)2

+

(
∆C ′

kCSC

)2

+

(
∆H ′

kHSH

)2

+RT

(
∆C ′

kCSC

)(
∆H ′

kHSH

)]1/2
(2)

where ∆L′, ∆C ′, and ∆H ′ are the adjusted lightness, chroma,
and hue differences; SL, SC , and SH are weighting functions;
kL, kC , and kH are parametric factors; and RT accounts for
chroma–hue interaction.
∆E00, the current CIE standard, is used in this paper to

assess perceptual color differences.

C. Color Scheme Generation Methods

Color schemes can be generated using two main approaches:
manual design and computer-automated generation.

1) Manual Design

Assigning color manually to individual traces relies on
designers’ subjective judgment and color theory [11], using
color guides and designing tools such as HCL color space
and Pantone chart [12].

2) Computer-Automated Generation

Computer-automated generation methods include:
• Histogram-based methods: Convert the color information

of image pixels into a histogram and identifies the most
frequent colors as the dominant colors [13].

• Clustering-based methods: Divide the color space into
distinct regions by grouping similar colors into compact
clusters.

• Metaheuristic methods: Employ metaheuristics to search
for optimal or near-optimal solutions [14].

• Neural network methods: Leverage deep learning archi-
tectures to extract color features and generate customiz-
able schemes.

Histogram methods often ignore brightness, misaligning
dominant colors with perception. Clustering is efficient but
lacks perceptual uniformity. Neural networks face challenges
in data preparation and complexity.

In this work, metaheuristic methods are applied to balance
exploration and exploitation for improving visual trace sepa-
ration in 3D ICs.

III. OPTIMIZATION PROBLEM AND METAHEURISTICS

To better visualize the traces of redistribution layers (RDLs)
or metal layers in 3D ICs, we formulate color scheme opti-
mization to enhance visual clarity of complex interconnec-
tions.

A. Problem Formulation

The color scheme optimization is formulated as a
continuous-variable, multi-objective problem, with colors rep-
resented in HCL color space as:

x = {(hi, ci, li) | i = 1, . . . , n} (3)

where (hi, ci, li) are HCL color parameters, and n is the total
number of colors.

The optimization focuses on the following metrics:
• ∆Emin,inter: Minimum inter-group color difference.
• ∆Emin,intra: Minimum intra-group color difference.
• ∆Eavg,intra: Average intra-group color difference.
The objective is to maximize ∆Emin,inter for inter-group

distinction, ∆Emin,intra for sufficient intra-group separation,
and ∆Eavg,intra for uniform distribution and visual balance:

maxF (x) =w1 ∆Emin,inter(x)

+ w2 ∆Emin,intra(x)

+ w3 ∆Eavg,intra(x) (4)

where w1, w2, and w3 are predefined weights, and x denotes
the set of color codes.
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The three metrics are defined as:

∆Emin,inter(x) = min
i∈g, j∈g′

g ̸=g′

∆E(xi,xj) (5)

∆Emin,intra(x) = min
g∈G

min
i,j∈g
i ̸=j

∆E(xi,xj) (6)

∆Eavg,intra(x) =
1

|G|
∑
g∈G

2

|g|(|g| − 1)

∑
i<j
i,j∈g

∆E(xi,xj) (7)

where ∆E(xi,xj) is the color difference between two colors,
and G denotes the set of color groups.

Constraints are imposed to enhance perceptual distinguisha-
bility and guarantee safe HCL-to-sRGB mapping, where HCL
color space is partitioned into regions bounded for each color
group g:

(hi, ci, li) ∈[hmin
g , hmax

g ]

× [cmin
g , cmax

g ]

× [lmin
g , lmax

g ], ∀i ∈ g (8)

B. Conventional Metaheuristics

Metaheuristics, also known as intelligent optimization al-
gorithms, address optimization problems by searching for
optimal or near-optimal solutions [14].

1) Differential Evolution

Differential Evolution (DE) is a population-based meta-
heuristic on real-valued vectors, using mutation, crossover, and
selection [15].

Given a population of n individuals xi (i = 1, . . . , n),
each representing a candidate solution, the mutation operator
generates a mutant vector:

vi = xr1 + F · (xr2 − xr3) (9)

where r1, r2, r3 ∈ {1, . . . , n} are distinct indices different
from i, and F ∈ [0, 1] controls the mutation strength.

The crossover operator combines the target vector xi and
mutant vector vi to produce the trial vector ui:

ui,j =

{
vi,j , if randj ≤ Cr or j = jrand

xi,j , otherwise
(10)

where pc ∈ [0, 1] is the crossover probability, rj ∼ U(0, 1),
and jrand ensures at least one mutant component is inherited.

Finally, the selection operator retains the better solution for
the next generation:

x
(g+1)
i =

{
ui, if f(ui) ≤ f(xi)

xi, otherwise
(11)

2) Particle Swarm Optimization

Particle Swarm Optimization (PSO) is inspired by social
behavior, where particles update positions based on personal
and collective experience [16].

Given a population size n, each particle’s position xi and
velocity vi are updated as:

vt+1
i = wvt

i + c1r1(pi − xt
i) + c2r2(g

∗ − xt
i) (12)

xt+1
i = xt

i + vt+1
i (13)

where w is the inertia weight, c1, c2 are cognitive and social
coefficients, r1, r2 ∼ U(0, 1) are uniform random numbers,
pi is the personal best, and g∗ is the global best.

3) Whale Optimization Algorithm
Whale Optimization Algorithm (WOA) is inspired by the

bubble-net hunting behavior of humpback whales [17].
Given a population of n agents, where each agent i repre-

sents a candidate solution xi, positions are updated through
three main mechanisms.

First, encircling behavior:

xt+1
i = x∗ −A ·D, D = |C · x∗ − xt

i| (14)

where x∗ is the best solution, and A, C are coefficient vectors.
Second, spiral bubble-net movement:

xt+1
i = D′ebl cos(2πl) + x∗, D′ = |x∗ − xt

i| (15)

where b is a constant, l ∼ U(−1, 1).
Third, random exploration:

xt+1
i = xrand −A ·D (16)

where xrand is a randomly selected solution.

4) Grey Wolf Optimizer
Grey Wolf Optimizer (GWO) inspired by the social hierar-

chy and cooperative hunting behavior of grey wolves [18].
Given a population of n agents, positions are updated based

on the top three solutions (α, β, δ wolves), which guide the
remaining n− 3 agents during the search.

Positions are updated as:

Xt+1 =
X1 +X2 +X3

3
(17)

where X1, X2, X3 are estimates relative to α, β, and δ. Each
estimate is calculated using:

Xm = X∗
m −Am ·Dm, Dm = |Cm ·X∗

m −X| (18)

where Am = 2arm − a and Cm = 2rm, with rm ∼ U(0, 1)
and a linearly decreasing from 2 to 0 over iterations.

5) Cuckoo Search
Cuckoo Search (CS) is inspired by the brood parasitism of

certain cuckoo species [19].
Given a population of n nests, new solutions are generated

via Lévy flights, enabling occasional long jumps for better
exploration [20].

The position update is:

x
(t+1)
i = x

(t)
i + α⊕ Lévy(λ) (19)

where α is the step size, Lévy(λ) is drawn from a Lévy
distribution, and ⊕ denotes entry-wise multiplication.

To maintain diversity, a fraction pa of the worst nests is
abandoned and replaced with random solutions.
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6) Non-dominated Sorting Genetic Algorithm II

Non-dominated Sorting Genetic Algorithm II (NSGA-II)
is an evolutionary algorithm for multi-objective optimization,
yielding a Pareto front that reflects objective trade-offs [21].

At each generation, the parent population Pt and the
offspring population Qt are merged into Rt = Pt ∪ Qt.
Individuals are ranked by non-dominated sorting: the first front
contains all non-dominated solutions, the second front contains
those dominated only by the first, and so on. Within each front,
the crowding distance di estimates local density to preserve
diversity.

Crossover and mutation are applied using the simulated
binary crossover and polynomial mutation operators, with
crossover probability pc and mutation probability pm, respec-
tively, controlled by distribution indices dic and dim.

The next generation Pt+1 is formed by selecting the top
n individuals from Rt based on Pareto rank and crowding
distance:

Pt+1 = SelectTopn(Rt;Pareto rank, di) (20)

where n is the population size, and di denotes the crowding
distance.

C. Adaptive Elitist Particle Swarm Optimization

We propose Adaptive Elitist Particle Swarm Optimization
(AEPSO), an enhanced metaheuristic algorithm that integrates
adaptive parameter control, elitism preservation, and whale-
inspired spiral search mechanism.

Unlike standard PSO, AEPSO dynamically adjusts inertia
weight and acceleration coefficients to balance exploration
and exploitation, while preserving the global best solution
to avoid quality degradation. A whale-inspired spiral search
enhances the ability to escape local optima, and an archive-
based leader selection strategy maintains diversity to improve
convergence. These mechanisms enable AEPSO to achieve a
more effective balance between global exploration and local
exploitation, thereby improving optimization performance over
conventional PSO.

• Cosine-decayed inertia weight:

w(t) = wmin + (wmax − wmin) ·
1 + cos

(
πt
T

)
2

(21)

where wmin = 0.2, wmax = 0.9, t is the current iteration,
and T is the maximum number of iterations.

• Dynamic acceleration coefficients:

c1(t) = cstart
1 − (cstart

1 − cend
1 ) · t

T
(22)

c2(t) = cstart
2 + (cend

2 − cstart
2 ) · t

T
(23)

where cstart
1 = 2.5, cend

1 = 0.5, cstart
2 = 0.5, cend

2 = 2.5, t is
the current iteration, and T is the maximum number of
iterations.

• Elitism mechanism: The global best solution g∗ is pre-
served by replacing the worst-performing particle in each
generation.

• Whale-inspired spiral search:

xi(t+ 1) = |D|ebl cos(2πl) + g∗ (24)

where D = |g∗ − xi(t)| is the distance between particle
i and the global best g∗, b = 1 controls the spiral
shape, and l ∼ U(−1, 1) is a uniform random number
introducing stochasticity.

• Archive-based leader selection: An archive of non-
dominated solutions is maintained, with leaders dynam-
ically selected based on crowding distance to balance
convergence and diversity.

IV. 3D PROTOTYPE MODELING FOR TRACE COLORING

To construct a 3D prototype model of the chip, we first
performed an X-ray scan on an test vehicle using a Zeiss
VersaXRM X-ray microscope. The test vehicle is a wire-bond
packaged field-programmable gate array (FPGA), measuring
18 × 18 mm, was imaged at an energy level of 70 keV,
capturing a stack of 171 high-resolution 2D X-ray images with
a voxel size of 2.2 µm using a 4× objective lens.

Following X-ray scanning, a focus stacking process was
applied to the image stack, where adjacent images were
combined for each circuit layer. This step compensated for
the inherent curvature of the chip packaging and enhanced the
clarity and precision of each layer’s visualization [22], [23].
The reconstruction focused on Layers 2, 3, and 4, which
primarily contain the substrate RDLs. Layer 1, used for wire
bonding, was excluded. Specifically, 8, 10, and 9 images were
stacked for Layers 4, 3, and 2, respectively.

Subsequent to focus-stacking, the detailed geometries of
power planes, circuit traces, design rules, and 3D via connec-
tions were manually traced and reconstructed using EasyEDA
software. Layers 4, 3, and 2 were then stacked and connected
using vias in ANSYS High Frequency Structure Simulator
(HFSS) to form a 3D prototype model (Fig. 1).

Figure 1. Workflow from X-ray scanning of the test vehicle to the
reconstruction of the 3D prototype model.
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V. COLOR SCHEME STRATEGIES

We apply nine coloring strategies to the chip model: one
clustering-based method, seven metaheuristic methods and one
manual design.

In this work, HCL color space is divided into several groups
based on hue, and the number of required colors in each group
can be defined according to the specific needs of a chip design.
The chip model used in this paper consists of six functional
regions, each assigned to a designated color group with the
following number of required colors:

• Voltage Common Collector (VCC) – Red (14 colors)
• Ground (GND) – Blue (3 colors)
• User Input/Output (IO) Pins) – Orange (2 colors)
• Dedicated Pins – Green (14 colors)
• Multi-Function Pins – Cyan (5 colors)
• Processing System Multiplexed Input/Output (PS

MIO) Pins and Processing System Double Data Rate
(PS DDR) Pins – Purple (23 colors)

Bounds for these color groups are defined through segment
classification with refined hue specifications [24], assigning
each a distinct perceptually constrained color range, as sum-
marized in Table I.

Table I
HUE, CHROMA, AND LIGHTNESS RANGES FOR EACH COLOR GROUP

Color Group Hue (h◦) Chroma (c) Lightness (l)

Red [0◦, 30◦] [50, 80] [40, 70]
Orange [30◦, 44◦] [55, 80] [50, 75]
Green [100◦, 160◦] [45, 70] [50, 80]
Cyan [160◦, 200◦] [50, 75] [60, 85]
Blue [210◦, 250◦] [50, 75] [40, 75]
Purple [270◦, 330◦] [50, 80] [35, 70]

All ∆E00 evaluations were carried out in HCL color space
using the D65 illuminant and the CIE 2° standard observer.
For the eight computer-automated methods, each algorithm
was executed 30 times, and the mean and standard deviation
were computed for robust evaluation. All experiments were
conducted on Ubuntu 24.04.1 LTS with an AMD Ryzen 9
7950X and 8 GB RAM.

A. Clustering-based Method

K-means [25], a widely used clustering algorithm, is em-
ployed as the baseline. A post-clustering ∆Emin,intra filter
is applied to ensure intra-group separation by repeating clus-
tering until all pairs satisfy the minimum threshold, which
linearly decreases from 7.0 to 0 across successive attempts.

B. Metaheuristic Methods

The optimization objective for all metaheuristics is defined
in (4).

Most metaheuristic algorithms depends on parameter set-
tings which affect the performance of the algorithms. Table II
summarizes the parameter settings used in this paper. To en-
sure fairness, parameter settings are mainly based on classical

literature or original recommendations, minimizing tuning bias
across algorithms.

DE and PSO follow [26], GWO and WOA use the original
authors’ recommended settings [17, 18], and CS is based
on [14]. For DE, PSO, WOA, GWO, CS, and AEPSO,
the objective weights w1 = 0.4, w2 = 2.0, and w3 =
0.1 are adopted, placing greater emphasis on maximizing
∆Emin,intra to ensure sufficient perceptual separation.

In contrast, NSGA-II employs equal weights w1 = w2 =
w3 = 1 to explore a well-distributed Pareto front without
predefined preferences, and follows the implementation de-
scribed in [21]. All Pareto-optimal solutions can be retained for
user-driven selection. In this study, to emphasize intra-group
separability and enable fair comparison with single-solution
metaheuristics, we further rank the first front and select the
solution with the maximum ∆Emin,intra, as illustrated in
Fig. 2.

Figure 2. The Pareto front obtained by NSGA-II illustrates the trade-offs
among ∆Emin,inter , ∆Emin,intra, and ∆Eavg,intra. Each point denotes
a non-dominated solution, with color intensity scaled by ∆Emin,intra. While
all solutions are viable candidates, this study selects the highlighted point with
the maximum ∆Emin,intra of 3.95 to ensure intra-group separability and
enable comparison with single-solution metaheuristics.

C. Manual Design

For manual design, a standard RGB-based color wheel,
the Adobe Color Wheel [27], is employed to define the
boundary colors. Additional colors are generated by varying
hue, chroma, and lightness within the defined ranges, resulting
in a color scheme with approximately uniform perceptual
differences.

D. Visualization in Virtual Reality

Unlike traditional software, virtual reality facilitates im-
mersive spatial learning beyond keyboard-and-mouse interac-
tion [28].

This work extends that paradigm to instructional contexts,
building on Ragan et al.’s VR-based spatial inspection of
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Table II
PARAMETERS SETTING FOR METAHEURISTIC ALGORITHMS

DE PSO WOA GWO CS NSGA-II AEPSO

n = 50 n = 50 n = 50 n = 50 n = 50 n = 100 n = 50
pc = 0.7 w linearly decreasing from 0.9 to 0.2 α = 1 pc = 0.9 archive size = 20
F = 0.6 c1 = 2 pa = 0.25 pm = 1/D

c2 = 2 dic = 20
dim = 100

complex 3D structures [29]. Multilayer substrate visualization
is similar to underground cave systems, where detecting small
spatial mismatches parallels tasks in modern FA tasks.

The VR environment is developed, where users rotate the
substrate with a joystick and use a controller ray to select
and highlight VCC parts, which can be pulled out for detailed
inspection of shape and color, as shown in Fig. 3.

Figure 3. User interact with substrate visualization using hand controllers in
a virtual reality environment.

VI. RESULTS AND DISCUSSION

This section presents results for all color scheme strategies,
an adaptability analysis of the metaheuristic framework, and
a method for handling color vision deficiency.

A. Results for Optimized Color Schemes

The performances of all methods are summarized in Ta-
ble III. AEPSO achieves the highest mean ∆Emin,intra of
5.52, representing a 24.6% improvement over PSO, the best-
performing conventional metaheuristic. In contrast, WOA con-
sistently shows the weakest performance, while DE, GWO,
and CS yield moderate improvements and NSGA-II achieves
competitive but still inferior results compared to AEPSO. Man-
ual design provides the largest inter-group separation but fails
to maintain sufficient intra-group distinction, underscoring the
difficulty of balancing these objectives without algorithmic
optimization.

Execution time is an important indicator of computational
efficiency. As shown in Table III, K-means is the fastest due
to its low complexity, whereas metaheuristics incur longer
runtimes mainly from repeated pairwise ∆E evaluations. PSO
and WOA are relatively efficient, DE and GWO show mod-
erate overhead, CS is slower, and NSGA-II is the most time-
consuming. AEPSO requires a slightly higher average runtime

than PSO but achieves a favorable efficiency–performance
trade-off through enhanced optimization results.

The convergence behavior of ∆Emin,intra across 100 itera-
tions is illustrated in Fig. 4. AEPSO consistently outperforms
all methods, showing rapid and stable improvements from the
early stages. PSO is the next-best performer, surpassing other
methods after iteration 40 with robust upward trends. CS and
DE remain relatively stable across iterations, GWO improves
gradually, and WOA plateaus early, showing minimal gains
thereafter.

Figure 4. Comparison of ∆Emin,intra over 100 iterations for DE, PSO,
WOA, GWO, CS, and AEPSO. The curves show the mean values across 30
runs, with shaded areas indicating standard deviation. AEPSO achieves the
highest ∆Emin,intra (5.52± 0.55).

Based on the evaluation results, AEPSO is selected to
generate the color scheme in Fig. 5, due to its superior
overall performance. Two colored 3D chip models using the
AEPSO-optimized scheme and the manually designed scheme
are presented in Fig. 6, respectively. Red groups from both
approaches are further compared in Table IV, highlighting the
specific colors assigned to various VCC power rails, with the
corresponding red color schemes illustrated in Fig. 7.

B. Adaptability Analysis

We further examined the case where all functional groups
were constrainted to 23 colors, with group boundaries and
optimization settings unchanged. All metaheuristics showed
degraded ∆Emin,intra due to the large number of required
colors within groups, and none of the conventional metaheuris-
tics exceeded the JND threshold of 2.3. Nevertheless, AEPSO
still achieved a mean ∆Emin,intra of 2.47, highlighting its
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Table III
COMPARISON OF RESULTS ACROSS COLOR SCHEME STRATEGIES

Methods ∆Emin,inter ∆Emin,intra ∆Eavg,intra Time (s)

K-means 8.01± 0.36 3.81± 0.39 13.37± 0.53 176.45
DE 11.79± 1.57 3.26± 0.33 16.43± 1.69 525.70
PSO 16.45± 1.79 4.43± 0.40 13.90± 1.52 516.96
WOA 14.26± 6.25 2.44± 0.91 12.16± 3.85 518.05
GWO 14.39± 1.84 3.24± 0.47 14.22± 1.23 522.49
CS 9.69± 1.77 3.12± 0.44 16.71± 1.21 661.81
NSGA-II 11.91± 2.95 3.96± 0.25 18.86± 1.72 1150.00
AEPSO 14.20± 1.96 5.52± 0.55 15.95± 1.92 536.54
Manual 54.23 1.51 16.25 N/A∗

∗ Average execution time not applicable to manual design.

Figure 5. The optimized color scheme for the 3D chip model was generated
by metaheuristic methods using AEPSO.

Figure 6. Partial representation of the colored 3D chip model applying
different color strategies: (a) AEPSO-optimized color scheme viewing along
the −Z axis.; (b) manually selected color scheme viewing along the −Z axis;
(c) AEPSO-optimized color scheme viewing along the trimetric orientation;
(d) manually selected color scheme viewing along the trimetric orientation.

robustness in maintaining perceptual separability under strin-
gent constraints, as shown in Table V. A resulting palette and
intra-group ∆E for each color group are illustrated in Fig. 8.

If different chip tpyes consist more than six functional

Table IV
RED GROUPS OF COLOR SCHEMES GENERATED BY AEPSO AND

MANUAL DESIGN

VCC AEPSO Manual

h◦ c l RGB RGB

VCCAUX IO 15.29 71.20 46.15 (209, 24, 82) (147, 13, 13)
VCCAUX 7.78 50.11 48.89 (191, 74, 107) (155, 20, 20)
VCCINT 24.16 79.08 41.68 (200, 0, 51) (163, 27, 27)
VCCO # 24.90 55.34 46.73 (189, 67, 75) (172, 33, 33)
VCCBRAM 17.02 56.96 49.99 (202, 70, 94) (180, 40, 40)
VCCPINT 10.23 56.71 56.15 (222,104,120) (188, 47, 47)
VCCPAUX 0.00 69.59 55.16 (234, 60, 135) (197, 53, 53)
VCCO MIO0 0.78 65.50 63.38 (254, 93, 155) (205, 60, 60)
VCCO MIO1 8.02 72.73 51.66 (228, 40, 110) (213, 67, 67)
VCCO DDR 0.00 54.11 58.53 (223, 95, 143) (222, 73, 73)
VCCPLL 15.17 58.18 40.00 (175, 37, 73) (230, 80, 80)
RSVDVCC 17.99 70.01 53.95 (231, 61, 96) (238, 87, 87)
VCCADC 0 13.07 74.48 62.83 (255, 78, 126) (247, 93, 93)
VCCBATT 0 4.10 74.17 69.12 (255, 97, 163) (255,100,100)

Figure 7. Comparison of red group color schemes generated by AEPSO and
manual design for the 3D chip model.

groups, HCL color space should be re-partitioned to allocate
each group a distinct subregion, thereby demonstrating that
the proposed metaheuristic framework is readily adaptable to
diverse IC layouts.

In addition, as heterogeneous integration packaging ad-
vances, interconnections emerge not only between packages
but also between individual dies [30]. This necessitates color-
ing the traces and solder bumps that connect these components,
constituting an emerging research topic with strong industrial
relevance.

As 3D ICs continue to scale, the number of distinguishable
colors within a single color space will eventually become
insufficient to ensure pairwise separation. In such cases, a new
coloring strategy may be adopted: given that interconnects are
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Figure 8. The optimized color scheme with 23 colors per group generated by AEPSO. The metric ∆Eintra denotes the minimum color difference within
each color group, reflecting intra-group separability.

Table V
COMPARISON OF RESULTS WITH 23 COLORS PER FUNCTIONAL GROUP

Methods ∆Emin,inter ∆Emin,intra ∆Eavg,intra

K-means 4.95± 0.29 2.01± 0.13 13.33± 0.04
DE 5.36± 1.57 1.44± 0.27 15.38± 0.63
PSO 9.58± 1.89 1.93± 0.26 11.86± 0.96
WOA 27.85± 6.10 0.16± 0.29 2.73± 2.74
GWO 9.75± 1.40 1.60± 0.15 13.27± 0.53
CS 3.91± 1.38 1.48± 0.29 16.36± 0.72
NSGA-II 6.62± 2.09 2.00± 0.12 16.32± 0.88
AEPSO 8.25± 1.57 2.47± 0.26 13.99± 1.06

constrained in length for electrical performance and can thus
be clustered within localized regions, a conditional application
of a “Four Color Theorem in 3D” can be envisioned, where
colors are reused across spatially separated clusters without
compromising visual clarity.

C. Color Vision Deficiency Scenarios

Color vision deficiency (CVD) is modeled using the
physiologically-based linear transformation matrices [31],
which simulate different types of color vision deficiency in
the linear sRGB space.

To generate color schemes that remain distinguishable for
color-deficient observers, each candidate palette is evaluated
under both normal and CVD conditions during the meta-
heuristic search by projecting the transformed colors into HCL
color space, while the objective function enforces intra-group
separation and maximizes inter-group distinctness across all
scenarios.

CONCLUSION

In this work, we compared seven metaheuristic color
scheme strategies to enhance perceptual clarity and trace
discrimination in 3D ICs. The proposed AEPSO algorithm
achieved the best performance, with a ∆Emin,intra of 5.52,
surpassing the JND threshold of 2.3 and ensuring clear intra-
group distinction. These findings establish a solid baseline for

perceptually meaningful color partitioning in complex IC lay-
outs, applicable to both empirical and simulated structures [5].

A VR environment for immersive inspection and FA was
also developed. Future work will include user studies in VR to
quantitatively assess perceptual effectiveness and refine color
schemes in a human-centered manner. We will also address
gamut clipping in HCL-to-sRGB conversion to preserve per-
ceptual separability.
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