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a b s t r a c t

The electrovibration tactile display could render the tactile feeling of different textured surfaces by
generating the frictional force through voltage modulation. When a user is sliding his/her finger on the
display surface, he/she can feel the frictional texture. However, it is not trivial to prepare and fine-tune
the appropriate frictional signals for haptic design and texture simulation. In this paper, we present a
deep-learning-based framework to generate the frictional signals from the textured images of fabric
materials. The generated frictional signal can be used for the tactile rendering on the electrovibration
tactile display. Leveraging GANs (Generative Adversarial Networks), our system could generate the
displacement-based data of frictional coefficients for the tactile display to simulate the tactile feedback
of different fabric materials. Our experimental results show that the proposed generative model could
generate the frictional-coefficient signals visually and statistically close to the ground-truth signals.
The following user studies on fabric-texture simulation show that users could not discriminate the
generated and the ground-truth frictional signals being rendered on the electrovibration tactile display,
suggesting the effectiveness of our deep-frictional-signal-generation model.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Various types of haptic feedback, such as electrovibration feed-
ack [1], vibrotactile feedback [2,3], and thermal feedback [4,
], could be rendered physically on hardware devices. These
evices allow users to understand the physical properties of
irtual environments and can be used to improve the immersion
nd the realness in Virtual Reality (VR) [6–9]. Among differ-
nt haptic-rendering devices, electrovibration tactile displays [1]
ould provide the frictional force feedback on the bare fingertips
f users to simulate different surface properties, such as the geo-
etric shapes [10,11], and the roughness of fabric textures [12].
his technology could be potentially applied for tactile simulation
nd rendering in VR [13], to allow users to feel and explore
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the texture and the shapes in the virtual environments through
haptic feedback [14–18].

However, the process of designing the appropriate frictional
signals for tactile texture simulation could be challenging due
to two main reasons. Firstly, the lateral forces are usually de-
pendent upon the frictional properties, such as the frictional
coefficient, the normal pressure force, and the displacements,
on the real physical textured surface. However, most textured
surfaces show irregular changes in the lateral force during the
finger-sliding movement on the surface. This makes it challenging
to build a general rule for the frictional simulation and predic-
tion for a textured surface. Secondly, while it could be feasible
to use the recorded sensor data to render tactile feedback on
the electrovibration tactile display [19,20], it is often costly and
time-consuming for data collection.

To address these gaps, we propose FrictGAN, a frictional-
signal-generation framework based on Generative Adversarial
Networks (GANs) [21] for tactile simulation of fabric material.
As shown in Fig. 1, FrictGAN takes the visual images of the
fabric materials as input, and generates the frictional signals
accordingly. We define the frictional signals as the frictional

coefficients on the finger-contact positions of the electrovibration
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Fig. 1. The concept of our image-to-friction generation using the GAN-based method. Users could input the RGB fabric image to the Generator Network, and it will
synthesize the frictional signals that could be applied on the electrovibration tactile display to simulate the haptic texture of the input fabrics.
tactile surface. Using HapTex database [22], we build a visual-
to-frictional data set for training a conditional-GAN-based deep
neural network [23], to generate the amplitude spectrogram
for representing the frictional-coefficients data. The series of
frictional coefficients further controls the electrovibration tactile
display to control the lateral force corresponding to the user’s fin-
ger displacement on the display surface. Extending our previous
work [24], we evaluate the FrictGAN model by computing the
root-mean-squared errors (RMSE) and t-Distributed Stochastic
Neighbor Embedding (t-SNE) [25] of the ground-truth and the
generated signals, and conduct a series of user-perception exper-
iments to investigate the effectiveness of the FrictGAN-generated
frictional signal on tactile simulation of fabrics. Our experimental
results of frictional-signal generation show that FrictGAN could
generate the amplitude spectrograms and the waveforms of the
frictional-coefficients data visually and statistically close to the
ground truth. Our user-perception studies show that the pro-
posed model could generate the frictional signals suitable for
tactile simulation both on trained and unseen/unknown types of
fabric materials, with no significant difference in the user percep-
tion compared to the pre-recorded frictional signals from the real
physical fabrics. Our source code, data set, and documentation
are available at: https://github.com/shaoyuca/Image-to-Friction-
Generation.

2. Related works

2.1. Texture simulation on electrovibration displays

The electrovibration tactile display can generate changeable
lectrostatic forces between the sliding fingertip and the display
urface by modulating the driving voltages, to create a control-
able attraction force and alter the surface friction [26]. Bueno
t al. [12] found that contact friction plays an important role
n the tactile perception of textile fabrics during bare fingertip
liding, suggesting the potential of fabric texture simulation using
he electrovibration surface. However, precisely controlling the
actile signals on the electrovibration tactile display for high-
idelity texture simulation remains a challenge. Some previous
orks simulated the visual textures or the geometric shapes on
he electrovibration tactile display through periodic wave sig-
als [27,28]. However, such solutions may not be effective for
imulating heterogeneous textured surfaces, such as real-world
abrics, because the periodic wave signals could not reflect the
nisotropic change of tactile properties on the surfaces.
Recently, the data-driven or measurement-based methods for

actile modeling and rendering has emerged [29]. The data-driven
lgorithms with the sensor data pre-recorded from real-world
hysical materials could reproduce the change of tactile char-
cteristics at different positions on the material surface. Ilkhani
t al. showed that such data-driven methods could outperform
he periodic wave signals on the texture rendering, especially
or the anisotropic haptic textures (e.g., plastics) [20,30]. Osgouei
t al. [31] presented an inverse dynamics model for generating
461
the voltage signals to mimic real-world textures on the electrovi-
bration tactile display. As an extended work [32], they conducted
user studies to compare the tactile feedback generated by the pre-
recorded signals with the real-world physical material surfaces,
and the results showed the model could achieve a high reality of
rendering virtual textures on the electrovibration tactile display.
Zhao et al. [33] simulated the tactile perception based on a
public haptic database [34] by weighting the friction signal and
the acceleration signal of the material surface. They also con-
sidered the real-time exploring speed of the user’s finger in the
tactile simulation. Jiao et al. [19] proposed a data-driven tactile-
rendering algorithm based on the displacement-based frictional
coefficients during the finger-sliding movement on the fabrics.
With the same data-acquisition system, Jiao et al. constructed
HapTex [22], a database of frictional coefficients recorded while
a finger is sliding on 120 types of fabric surfaces.

While the aforementioned data-driven approaches could
achieve considerable performance on tactile texture rendering
and simulation, they often required pre-recorded frictional sig-
nals at hand. However, the signal-recording procedure could
be high-cost and time-consuming. As HapTex [22] provides an
aggregated database, including both visual and frictional tactile
signals, of bare fingertips sliding on 120 types of fabrics, it could
be potentially used for predicting the frictional signals from the
visual image of the surface. Similar works have been conducted in
the deep image-to-vibration generation [35–37]. In this paper, we
adopt a GAN-based deep-learning structure on image-to-friction
generation and show that the generated frictional signals could be
rendered on an electrovibration tactile display for realistic fabric
texture rendering.

2.2. Tactile signals synthesis from visual images

Some prior works have explored the image-based tactile ren-
dering on electrovibration tactile displays. Wang and Sun [38]
proposed a tactile rendering algorithm by extracting the shape
features from the input visual images. Wu et al. [39] presented
an image-based generative model for tactile signals by mapping
electrostatic signals and image textures. Specifically, they used
the Roberts filter to extract the texture information from an
image, and modulated the friction between the fingertip and the
electrostatic display. Similarly, Kim et al. [28] extracted the local
gradient geometric features of visual images to create the tactile
perception of 3D shapes on the electrovibration tactile device.
These methods inferred the tactile signals based on the image
textures, but the generated tactile data might not be suitable
for real-world material simulation as it is not based on the real
physical material samples.

Recently, Generative Adversarial Networks (GANs) show the
considerable performance on high-dimensional data generation,
such as image-to-image [23,40], text-to-image [41,42], and audio-
to-image [43,44]. Some researchers also adopted the GAN-based
methods for cross-modal visual–tactile data generation to predict
the tactile information (e.g., vibrotactile/force/thermal signals)

https://github.com/shaoyuca/Image-to-Friction-Generation
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ased on the visual input (e.g., texture/material images or videos).
s a preliminary attempt, Ujitoko and Ban [35] presented Tact-
AN, for the vibrotactile signal generation from the textured-
urface images or the label attributes. Similarly, Li et al. [45]
roposed a GAN-based method to learn the visual–tactile as-
ociation by identifying the category labels of input images to
uide the generation of the vibrotactile signals. Liu et al. [36]
uilt the image-to-tactile cross-modal perception based on Cycle-
AN [40], and developed a handheld vibration device to render
he generated tactile signals for visually impaired people.

The works mentioned above focused on vibrotactile signal
eneration with the availability of the comprehensive data
ets [34,46]. To our best knowledge, there is no attempt for
mage-based frictional signal generation for real-world material
imulation. Generally, GAN could generate a series of data, such as
mage super-resolution [47], sketch-based image generation [48]
nd audio-visual generation [43], that are closed to the ‘‘real’’
ata samples corresponding to the input from the same or other
omain. Noted that the CNN-based encoder has also been used
n data forecast, to construct the functional mapping between
he input and the output data based on the distributions in the
atent space [49]. However, existing research showed that GAN-
ased generative networks outperformed the CNN-based solution
n cross-modal data generation [50]. In this work, we propose a
AN-based framework for frictional signal generation from the
isual images based on the augmented HapTex database [22].

. Method and implementation

We aim to build the mapping between vision (e.g., visual
mages) and touch (e.g., frictional signals on the electrovibration
actile surfaces) for tactile simulation of the fabric surface. This
ould be considered as the problem of cross-modal visual-to-
actile generation. Inspired by the previous works on cross-modal
ata generation [36,41,43] and data-driven texture rendering on
lectrostatic tactile displays [19,32], we propose a deep-learning-
ased method of frictional-coefficients data generation for the
actile simulation of fabrics.

Fig. 2 shows the framework of our frictional-coefficients gen-
ration and rendering system. The system first converts the RGB
isual image of fabric material into a gray-scale, which will be
aken as the input for the GAN-based generative model, and gen-
rates the waveform-based frictional-coefficients data to deter-
ine the driving voltages on the electrovibration tactile display

or tactilely rendering the fabric materials.

.1. Frictional-coefficient signals generation model

The displacement-based frictional coefficients data could be
rocessed as the spatial time-series signals, and be converted
nto 2D representations (e.g., amplitude spectrograms). Inspired
y the previous work on cross-modal visual–tactile data genera-
ion [35,36], we adopt the structure of conditional GAN
cGAN) [51] as the backbone of our signal-generation model, and
tilize the Griffin–Lim algorithm [52] for converting the gener-
ted amplitude spectrograms to the waveform of the frictional-
oefficients data.

.1.1. Model architecture
The green part of Fig. 2 demonstrates the architecture of

ur proposed frictional-coefficients generation model. The model
onsists of a pair of generator G and discriminator D that are com-
monly adopted in the cGAN-based framework for image-to-image
generation [23]. The generator G contains two parts, namely an
encoder network and a decoder network. The encoder network
takes the visual image as input, and outputs a 128-dimensional
462
latent vector. The decoder synthesizes the amplitude spectrogram
from the latent space represented as the concatenation of the
latent vector and a randomized 50-dimensional noise vector. The
generated and the ground-truth spectrograms and the cropped
visual image (i.e. input) are then passed to the discriminator
D to distinguish the ground-truth and the generated amplitude
spectrograms based on the conditional input. The final generated
spectrogram is converted into the waveform by the Griffin–Lim
algorithm [52].

We adopt the Convolutional-Neural-Networks (CNN) structure
for all the network components in our model. For the generator
G, we implement the U-net backbone [53] to build a series of
skip connections between the layer i and the layer n − i of the
generator G where n represents the total number of layers in
G. In addition, we implement the down-sampling and the up-
sampling layers, the batch normalization, and the ReLU units in
G; and three dropout units are added in the first three layers of
the decoder. We also add a ReLU function in the last layer of the
generator for the spectrogram generation in the final stage. For
the discriminator D, we adopt the PatchGAN structure [23] which
takes a channel-wise concatenated vector from the cropped input
image and the generated/ground-truth amplitude spectrograms
as the final input, and outputs a patch-based vector. Each layer
in the discriminator consists of the down-sampling layer, the
batch normalization, and the Leaky ReLU units. After finishing
the training procedure, we remove the discriminator D and only
tilize the generator G to generate the amplitude spectrogram,
nd convert it to the wave-format frictional signals for tactile
endering on the electrovibration tactile display. For more details
n the network architecture, please refer to our source code.

.1.2. Objective functions
We adopt the cGAN structure to learn the mapping from the

mage data x and the random noise vector z, to the amplitude
spectrogram y. The objective mapping of the model is as below:

G : x, z → y. (1)

Following the original cGAN [51] structure, we define the
objective function of our proposed model as:

min
G

max
D

V (D,G) = Ex∼p(x),y∼p(y) [logD(y|x)] +

Ex∼p(x),z∼p(z) [log(1 − D(G(z, x)|x))].
(2)

where p(x), p(y) and p(z) represent the distribution of the image
domain, the spectrogram domain and the random noise, respec-
tively. However, using only this original cGAN objective function
(Eq. (2)) may cause gradient vanishing [54]. To solve the problem,
we implement the Wasserstein GAN (WGAN) [55] for more stable
generator G and discriminator D training. That is, we replace the
original GAN loss as the Wasserstein GAN loss LWGAN as below:

LWGAN = −Ex∼p(x),y∼p(y) [D(y|x)] + Ex∼p(x),ỹ∼p(ỹ) [D(ỹ|x)] (3)

Inspired by the previous work on spectrogram-based tactile
signal generation [36], we also include the Manhattan distance,
which is also known as the L1 distance, as our pixel-wise loss.
Thus, the final objective function becomes:

argmin
G

max
D

LWGAN + λLL1 (4)

In this equation, LWGAN is the WGAN-loss, and LL1 is the pixel-
wise L1 loss between the real and the generated spectrograms. λ
is the hyper-parameter, which is set as 100.
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Fig. 2. The illustration of our system implementation. Firstly, the RGB fabric image (1) is converted as the gray-scale image as the texture image (2) during the
pre-processing procedure and fed into the Generator (3) with a randomized 50-d noise vector (the orange part) in the latent space for our spectrogram generation
(4). Meanwhile, the pre-recorded frictional-coefficients data (5) is computed as the spectrogram format (6) through STFT as the ground-truth data and passed into
the discriminator (7) with the concatenation of the cropped gray-scale image. After the training stage, we remove the discriminator (7) and utilize the Griffin–Lim
algorithm (8) to transform the generated spectrogram into the wave-format frictional-coefficient signal (9). It will be mapped to the applied voltage (10). Then we
modulate the driving voltage and the frequency of the squared carrier wave (11) for the electrovibration tactile displays rendering (12). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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3.2. Texture modeling and rendering

Following the procedure adopted in HapTex [22], we map the
riving voltages to the frictional coefficients, and modulate the
arrier wave for texture simulation on the electrovibration tac-
ile display. We amplify the frictional-coefficients signals as the
pplied voltages at the specific position on the electrovibration
isplay surface according to the following formula:

V (s) = b ∗ f (s) (5)

where V(s) denotes the applied voltage at the position s on the
lectrovibration tactile display, b is the amplification factor, and
(s) represents the value of the displacement-based frictional
oefficients signal. As the haptic perception of electrovibration
epends on the spatial and the temporal change of the waveform
ignal [56], we add a high-frequency carrier-wave function with
he frequency fc denoted as Y (t) to modulate the driving voltage
on the electrovibration tactile display. Specifically, the driving
voltage at the position s and the timestamp t could be calculated
as:

V (s, t) = b ∗ f (s) ∗ Y (t) (6)

The amplification factor b and the carrier wave frequency fc
could be determined by users subjectively matching the virtual
and the physical textures [19]. We will discuss this process in
Section 6.

4. Data preparation

The HapTex database [22] presents both visual images and
position-based frictional coefficients collected during the bare-
finger sliding on the corresponding fabric surface. The previous
work on haptic texture rendering [19] shows that the frictional-
coefficient data pre-recorded from the fabric surfaces could be
used for rendering realistic virtual texture on the electrovibration
tactile display. The HapTex database [22] was constructed under
a similar process using the same data-acquisition system as the
aforementioned study [19]. Therefore, it is reasonable to assume
that it would be effective to adopt the HapTex data for texture
rendering on an electrovibration tactile display.
463
This database could be used to create haptic textures on the
electrovibration tactile display device through psychophysical ex-
periments [19]. HapTex contains in total of 120 types of fabric
material within 10 categories (i.e. Velvet, Cotton, Leather, Fiber,
Chiffon, Wool, Nylon, Polyester, Linen, and Silk). To train our
visual-to-frictional generation model, we select 10 types of fabric
materials (randomly choose one from each category) to construct
our data set for model training and testing. Note that we exclude
some contaminated samples which contain stains in the visual
image, as such features may affect the process of model training
and signal generation. The selected samples (from F1 to F10) are
shown in the first column of Fig. 3.

4.1. Visual data & frictional tactile data

We take the visual image of the fabric material as the input
for our frictional-signal generation model. The original HapTex
database [22] contains the RGB images of different types of fabric
materials in the resolution of 2362 × 2362 pixels mapping to the
size of 200 × 200 mm2 of the physical fabric samples. We crop
these original RGB images into the size of 1024 × 1024 pixels,
mapping to 100 × 100 mm2 in the physical material, as the input
size of our signal-generation model. Since the tactile signal may
not strongly depend on the colors of the fabrics [35], we then
convert the RGB images to the gray-scale images to reduce the
bias in model training. The second column of Fig. 3 demonstrates
the examples of the gray-scale visual images for the selected
fabric samples.

We utilize the position-based frictional coefficients as our
tactile data, for the generative model training and the electro-
vibration hardware control. The frictional tactile data consists of
a series of measured frictional-coefficients data points related to
the positional displacements on the 200 × 200 mm2 physical
abric samples. Mapping to the visual image, each original fric-
ional tactile signal of the selected fabric material includes 2000
ata points with a finger-sliding distance of 155 mm approxi-
ately. To acquire the 2D representation of the frictional data,
e compute the amplitude spectrogram from the wave-format

rictional coefficients using Short-time Fourier transform (STFT),
ith a 512-hamming window and a 128-hop size.
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.2. Visual-to-frictional data set

To construct the visual-frictional data set for model training
nd testing, we adopt the data augmentation as follow:
For visual data, we first apply a sliding-window with the size

f 1024 × 1024 pixels to move horizontally across and crop the
riginal fabric image (2362 × 2362 pixels) in HapTex with the

offset of two pixels between two consecutive windows. To this
end, we totally acquire 669 RGB images for each kind of fabric
material after the aforementioned augmentation. On the other
hand, to map the pixel-wise visual images and the positional
frictional-coefficients signals, we intercept the first 100 mm fric-
tional signals including 1280 data points, which is corresponding
to the size of 1024 × 1024 fabric image. Then we apply the
sliding window with the size of 1280 data points to horizontally
move from the beginning to the end of a frictional-coefficients
signal with the offset of 1/12 mm between two consecutive
windows based on the previous sliding-window settings of visual
images, to build the visual-to-frictional cross-modal data pairs
as our augmented data set. To this end, we augment both the
visual images (1024 × 1024) and the amplitude spectrograms
(257 × 11), for each category of fabric materials, resulting in 10
types of materials × 669 × 2 = 13380 visual and tactile data in
total. For the visual images and the spectrograms data of each
fabric material, we randomly split the data-pairs with the ratio
of 8 : 1 : 1 (training : validation : testing) as our data set.

5. Technical experiment: Frictional signals generation

5.1. Evaluation metrics

To evaluate the performance of our generative model, we com-
pare the generated results with the ground-truth data. We first
compare the amplitude spectrograms between the original data
and the generated data. Specifically, we qualitatively compare
the generated spectrogram from our proposed model and the
real spectrogram on the visual appearance. Inspired by the pre-
vious work on GAN-based time-series data generation [57] and
haptic texture generation [35,58], we then utilize t-Distributed
Stochastic Neighbor Embedding (t-SNE) [25] to visualize the high-
dimensional latent vectors in a 2D space as another qualitative
evaluation metric. As our quantitative evaluation metric, we also
examine the root-mean-squared errors (RMSE) and the mean
absolute errors (MAE) on the generated 2D spectrogram data and
1D displacement-based waveform frictional-coefficients data.

5.2. Experimental settings and training details

We train our image-to-friction generation model using the
data set described in Section 4.2. In our experiments, we im-
plement our network with the Tensorflow framework 2.1.0 and
train it on an Nvidia Geforce GTX 2080Ti GPU. The frictional
signal processing and the Griffin–Lim algorithm [52] are imple-
mented using the librosa [59] library, and the t-SNE results and
the plots are generated with Scikit-learn [60] library in Python.
We follow the WGAN-based training settings used by Arjovsky
et al. [55], and use the RMSprop optimizer with a batch size of
8. The learning rates for the generator and the discriminator are
5e−5 in our experiments. All model weights are initialized with
the Xavier normal initializer [61]. According to our preliminary
experiments, we set the number of training iterations as 200
epochs. With the aforementioned hardware and software config-
uration, it took about one day for training the GAN-based model,
and each image-to-signal generation took approximately 0.02 s
through our trained model. The final loss values of the Generator
and the Discriminator were 0.8354 and 0.9456, respectively.
464
5.3. Experimental results and analysis

Fig. 3 illustrates the visual comparison of the spectrograms
(generated vs real) and the waveform-based (the horizontal X-
axis represents the displacement) frictional signals (generated vs
real). Specifically, the third and the fourth columns show the
generated and the real spectrograms, respectively. The compar-
ison of these two columns demonstrates the visual similarity
between the generated and the real spectrograms qualitatively.
We also compare the generated and the ground-truth frictional
coefficients in the waveforms. As shown in the last column of
Fig. 3, the orange curves represent the generated signals, and
the blue curves illustrate the real signals. The comparison on the
waveform of frictional signals shows a similar trend and level of
fluctuation between the generated and the ground-truth signals.

Furthermore, we compute the t-SNE visualization of the high-
dimensional latent vectors (128-D) output by the encoder to
compare the distribution of the training and the testing frictional
data in a 2D space. This approach of dimension reduction has
been applied to evaluate the generation of high-dimensional data
(i.e., images [62] or time-series data [63]). In addition, some
previous works [35,58] related to haptic texture generation also
adopted t-SNE visualization for their evaluation of generative
models. Fig. 4 shows that the texture encoder has learned to
cluster the same type of fabric material together, as the t-SNE
results of the latent vectors for both the testing data (the ‘‘star’’
marks) and the training data (the ‘‘dot’’ marks) largely overlap
with each other in the 2D space. The results also reveal that
the samples of different fabric materials could be grouped into
visually distinguishable clusters in a 2D space. These observations
indicate that the generative model could learn the encoded fea-
tures of the tactile signals for the same material category [64],
and generate the outputs close to the real samples [57].

For the quantitative evaluation, Tables 1 and 2 show the aver-
age RMSE and MAE of the generated spectrograms and frictional-
coefficient signals for each fabric material type, respectively. The
overall average RMSE value of spectrograms for all the generated
samples across the 10 selected materials is 0.257 (SD = 0.064),
and 0.028 (SD = 0.004) for the generated displacement-based
frictional-coefficients signals, achieving the ratio of RMSE and
the mean value of 5.22%–10.21%, averagely 6.94% for frictional-
coefficient-signals. Similarly, the overall average MAE value of
spectrograms is 0.069 (SD = 0.014), and 0.023 (SD = 0.003)
for the waveform frictional-coefficients signals, which reaches
4.14%–8.42% (averagely 5.13%) on the ratio of MAE and average
frictional-coefficient signals.

5.4. Generalization to new/unseen data

To study the generalizability of our model on generating the
frictional signals for some new/unseen data, we randomly select
three types of new data (denotes as Fiber-N, Wool-N and Silk-N)
which are not included in the training data set, and pre-process
their visual data and frictional data with the same aforemen-
tioned data-preparation procedure in Section 4. Fig. 5 shows
the visual textured images in gray-scale and the comparison
of the waveform-based frictional-coefficients data (generated vs
ground-truth). The trends and the values of the generated signals
(the orange curves) are visually close to the ground-truth signals
(the blue curves). The RMSE values of generated spectrograms
and displacement-based frictional-coefficient-signals are 0.317
and 0.033 (Fiber-N), 0.402 and 0.034 (Wool-N) and 0.454 and
0.055 (Silk-N), separately, averagely 0.391 and 0.041, for these
three types of new/unseen data. Additionally, the t-SNE visualiza-
tion (Fig. 4) also illustrates that the generated frictional signals
of selected three types of new data (Fiber-N, Wool-N and Silk-
N) in the 2D space are closed to the clusters of the materials
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Fig. 3. The RGB fabric images (first row) and the gray-scale textured images (second row), and the comparison of generated/real spectrograms (third & fourth rows)
and displacement-based waveforms (the horizontal X-axis represents the displacement) of the frictional signals (The orange line represents the generated and the
lue line shows the real/ground-truth signals in the last row). (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)
hat are included in the training set, suggesting the model could
enerate reasonable tactile signals of the new data based on the
earned knowledge. For example, the generator could generate
he data of the unseen silk fabric (red ‘‘cross’’ marks) that is close
o the cluster of silk (red ‘‘circle’’ marks) in the 2D space of t-SNE
isualization, as they may share similar tactile features on texture
urface.
465
6. User study: Tactile simulation on electrovibration tactile
display

After experimenting with the technical performance of our
model, we investigate the user perception on fabric simulation
using the generated frictional-coefficients data. Specifically, we
study how users would distinguish the generated frictional sig-
nals and the pre-recorded/ground-truth signals being rendered
on the electrovibration tactile display.
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Fig. 4. The 2D t-SNE visualization of the tactile data. The ‘‘dot’’ mark denotes the training data (with the suffix ‘‘-TR’’) and the ‘‘star’’ mark denotes the testing data
(with the suffix ‘‘-TE’’). The ‘‘cross’’ mark denotes the generated data from the new/unseen materials not in the training set (with the suffix ‘‘-NE’’). The same color
indicates the same category of fabric materials. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Table 1
The RMSE values of the generated spectrograms and the reconstructed frictional-coefficients signals
for different materials.

Fabric materials RMSE (SD) Average signals RMSE/Average signals
Spectrograms Signals

F1-Velvet 0.0772(0.0075) 0.0232(0.0021) 0.4136 5.59%
F2-Cotton 0.2437(0.0123) 0.0205(0.0008) 0.2817 7.05%
F3-Leather 0.9104(0.0441) 0.0515(0.0025) 0.5581 10.21%
F4-Fiber 0.2629(0.0944) 0.0278(0.0024) 0.4052 6.66%
F5-Chiffon 0.2181(0.1108) 0.0301(0.0104) 0.4308 6.61%
F6-Wool 0.2430(0.1076) 0.0309(0.0065) 0.4684 6.73%
F7-Nylon 0.1215(0.0305) 0.0175(0.0022) 0.2922 5.86%
F8-Polyester 0.1015(0.0291) 0.0160(0.0011) 0.3069 5.22%
F9-Linen 0.2692(0.1240) 0.0433(0.0094) 0.4583 9.23%
F10-Silk 0.1252(0.0757) 0.0194(0.0024) 0.3068 6.27%
Average 0.2573(0.0636) 0.0280(0.0040) 0.3922 6.94%
Table 2
The MAE values of the generated spectrograms and the reconstructed frictional-coefficients signals
for different materials.

Fabric materials MAE (SD) Average signals MAE/Average signals
Spectrograms Signals

F1-Velvet 0.0334(0.0021) 0.0180(0.0016) 0.4136 4.37%
F2-Cotton 0.0602(0.0046) 0.0166(0.0007) 0.2817 5.91%
F3-Leather 0.1274(0.0055) 0.0470(0.0019) 0.5581 8.42%
F4-Fiber 0.0778(0.0167) 0.0221(0.0020) 0.4052 5.48%
F5-Chiffon 0.0962(0.0318) 0.0246(0.0091) 0.4308 5.72%
F6-Wool 0.0724(0.0208) 0.0235(0.0045) 0.4684 5.14%
F7-Nylon 0.0434(0.0062) 0.0137(0.0018) 0.2922 4.70%
F8-Polyester 0.0511(0.0130) 0.0127(0.0009) 0.3069 4.14%
F9-Linen 0.0779(0.0267) 0.0343(0.0077) 0.4583 7.48%
F10-Silk 0.0462(0.0157) 0.0154(0.0020) 0.3068 5.03%
Average 0.0686(0.0143) 0.0228(0.0032) 0.3922 5.13%
6.1. Participants

Twelve participants (seven males, five females) are recruited
rom a local university, averagely aging 27.17 years old (SD =
.62). Two of them have previous experience with electrovibra-
ion tactile displays. One participant is left-handed, and the others
re right-handed. A small gratuity worth around 5 US Dollars is
rovided for the completion of the study.
466
6.2. Apparatus

As we use the HapTex database in our implementation, we
adopt the same setup and procedure in Jiao et al.’s work [19]
for our electrovibration-based fabric texture rendering through
the pre-recorded/generated frictional-coefficient signals to en-
sure the rendering effectiveness. Specifically, we implement a
customized electrovibration tactile display (Fig. 6(a)) following
the same actuation principle of the TeslaTouch device [1]. To



S. Cai, L. Zhao, Y. Ban et al. Computers & Graphics 102 (2022) 460–473

s
o
c
u
m
p
h
o
a
e

6

t
w
o
r
s
t
b
l
t
s
t
e
e

m

Fig. 5. The generated results of the unseen/new data (Fiber, Wool and Silk). The
first column represents the textured image and the second column shows the
generated (orange) and the real/ground-truth (blue) waveform-based frictional
coefficients data. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

facilitate the data recording, we develop the interactive inter-
face shown in Fig. 6(b). The tactile display device consists of an
infrared (IR) touch frame, a 3M Microtouch screen, a Microsoft
Surface Pro3 tablet, and the controlling circuit. The haptic signal
stimulus is activated and regulated in the controlling circuitry
unit, which receives the commands from the tablet. The interac-
tive and display area of the electrovibration device is 10.8 inches
diagonally, which is determined by the size of the tablet. The
resolution of the tablet screen is 1920 × 1280 pixels, and we
cale the fabric image into 1280 × 1280 pixels to match the size
f 100 × 100 mm2 texture surface. Hence, the frictional signals
ould be controlled with the resolution of one pixel based on the
ser’s finger position on the electrovibration surface. When a user
oves his/her finger on the 3M Microtouch screen, the finger’s
osition is tracked by the IR touch frame, and the electrovibration
aptic feedback could be presented at the corresponding position
n the screen. An Aluminum casing is installed around the device
nd connects with the ground pin of the controlling circuit to
nsure the grounding status of the user’s body for safety.

.3. Stimuli

The electrovibration tactile display can generate various hap-
ic textures by modulating the frequency, the voltage, and the
aveform of the input signal. In our study, the frequency range
f the driving signal is from 10 to 1000 Hz, and the voltage
ange is 0 to 255 Vpp. The current is limited to 0.5 mA for
afety. In terms of the carrier wave, existing research showed
hat humans are more sensitive to the tactile stimuli generated
y the square wave than the sinusoidal wave for the frequencies
ower than 60 Hz, and no significant difference between these
wo waveforms at frequencies greater than 60 Hz [56]. Thus, we
elect the square wave as the carrier wave for the input signal of
he device. The frequency value and the amplification factor for
ach material simulation are determined by the psychophysical
xperiment which will be described in the latter part.
To reduce the subjects’ workload and time during the experi-

ent, we randomly select 5 types of fabrics from the 10 selected
467
Fig. 6. (a) The experimental apparatus and (b) the interactive interface.

fabric materials (F1-Velvet, F5-Chiffon, F6-Wool, F9-Linen and
F10-Silk in our current experiment). In addition, we include the
3 unseen/unknown fabric materials, namely N1-Fiber, N2-Wool,
and N3-Silk, to further investigate the user perception of the
frictional signal generated from the new data. To this end, we
simulate 8 types of fabric materials by rendering their real and
generated frictional signals on the electrovibration tactile display.
The physical fabric materials are shown in Fig. 7, and used as the
tactile reference in this study.

6.4. Study design

We conduct a within-subject study to evaluate the perfor-
mance of tactile rendering on fabric materials using the generated
frictional signals. During the study, the participants could move
their finger horizontally across the electrovibration tactile sur-
face to perceive the virtual texture. To create a realistic texture
simulation, we design a two-phase user-perception experiment:
parameter determination and virtual texture comparison. The
first phase is designed for determining the amplification fac-
tor and the frequency of the input signal for the high-fidelity
tactile rendering, and the second is for comparing the texture-
rendering quality of the generated and the pre-recorded/ground-
truth signals. The whole experiment for each participant takes
approximately 50 min in total, with the two phases as below:

Phase 1: Parameter Determination (15–20 min). In this
phase, the ground-truth frictional signal is rendered on the elec-
trovibration tactile display for the baseline of tactile simulation

determination. For each fabric material type, the participant is
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Fig. 7. The physical fabric materials to be rendered on the electrovibration
tactile display. 1: F1-Velvet, 2: F5-Chiffon, 3: F6-Wool, 4: F9-Linen, 5: F10-Silk,
6: N1-Fiber, 7: N2-Wool, 8: N3-Silk.

instructed to adjust the amplification factor and carrier wave
frequency using the interactive interface. In our empirical exper-
iments for amplification factor and frequency adjustments, we
found it is not trivial to achieve considerable rendering perfor-
mance by adjusting only one factor (i.e. either amplification factor
or frequency), so we decide to allow users to adjust these two
parameters concurrently. The participant can stop at any time
when they feel the rendered tactile sensation well matches with
the physical material sample on the side of the tactile display. The
recorded results of the amplification factors and the frequencies
are used for both ground-truth and generated signals rendering
in the next phase for each participant individually.

Phase 2: Virtual Texture Comparison (20–30 min). In this
phase, the participant is asked to evaluate the authenticity of
the frictional signals rendered on the tactile display. Specifically,
taking the real physical fabric sample as the reference, the par-
ticipant needs to select the virtual tactile texture that is more
likely to be rendered by the ground-truth signal within a group of
two provided frictional signals (generated vs real/ground-truth).
Both the generated and the ground-truth signals are scaled by the
same amplification factor and modulated with the same frequen-
cies acquired from Phase 1 by each participant for each type of
fabric material.

The HapTex database [22] records the friction-related parame-
ters with the normal pressure force between 0.8 and 1.2 N applied
on the surface, falling in the range between 0.2 and 1.5 N, which
could be recognized as the ‘‘light’’ pressure for surface texture
perception [65]. Hence, we require the users to gently move their
fingertips for texture perception during our experiments both
in the physical and virtual texture surfaces. Since the frictional-
coefficient signals in HapTex are collected mainly based on the
displacements, we do not strictly control the sliding speed of
the fingertip during the perception experiments. Additionally, we
aim to measure the users’ texture perception in a natural process
without controlling the pressing force and the sliding speed.

6.5. Task and procedure

Each experimental session involves one experimenter and one
participant. Upon arrival, the participant is seated in a comfort-
able position. The session starts with introducing the experiment
process, and the participant is asked to finish a pre-questionnaire
about his/her demographic information. Before the actual per-
ception experiment, the participant needs to wash their hands
with soap and dry with a paper towel to ensure the normal
tactile perception on his/her bare fingertip, and the touchscreen
of the electrovibration device is also cleaned with alcohol by
the experimenter. During all the experiment sessions, the room
temperature was 23 ◦C–26 ◦C, and the humidity was 15%–35%.
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Fig. 8. The experimental setup. The participant sits at one side of the table and
explores the virtual textures; meanwhile, the experimenter sits at the other side
of the table to transpose the real material samples and records the participant’s
response.

The actual experimental session starts with Phase 1 for pa-
rameter determination. Specifically, the participant is instructed
to adjust the amplification factor and the frequency for the pre-
recorded/ground-truth frictional signals, to match the real phys-
ical materials placed aside. The experimenter presets the initial
values of these two parameters according to the empirical ex-
periments. When the tactile perception of the real material is
stronger than the virtual material (i.e., the real material induces
a larger frictional force), the participant needs to increase the
amplification factor in the software interface (Fig. 6), as well as
to increase the frequency when the real material is perceived
smoother with smaller friction than the virtual material. Finally,
the parameters set by each participant are saved locally and used
to render both the generated and the ground-truth friction signals
in Phase 2. While being satisfied with the virtual material, the
participant is asked to remember the tactile sensation of the
virtual material as much as possible.

There is a voluntary 5-minute break period after Phase 1, and
Phase 2 begins right after the break. In Phase 2, each material
is rendered using both the real/ground-truth and the generated
signals on the electrovibration tactile display. The participant
perceives the virtual textures and evaluates the similarity with
the reference of the real physical fabric samples. To this end, the
participant needs to verbally report whether the current virtual
texture is rendered using the real/ground-truth signals. Thus,
each participant performs a total of 2 types of signal stimuli
(generated or real) × 8 types of materials × 2 repetitions = 32
trials. The order of fabric types is displayed randomly, and the
order of the frictional signals is counterbalanced within each type
of fabric material. During the experiment, the participant wears
an eye-patch when he/she perceives the textures and completes
the tasks. The verbal responses are recorded by the experimenter
(Fig. 8).

6.6. Results

Table 3 shows the amplification factor and the frequency
values recorded in Phase 1 for each fabric material, respectively.
Note that the amplification factor and the carrier signal fre-
quency vary broadly across different types of fabric materials.
The amplification factor could scale the amplitude of the driven
voltage. For the electrovibration perception, a texture stimulus
being rendered with a high frequency could be perceived as being
smooth [1]. For instance, the material#5 (F10-Silk) generally feels
smoother than the others, so it might yield the highest frequency

value (293.3 Hz). On the other hand, existing research shows that
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Table 3
The mean and the SD of the amplification factor and the frequency
recorded in the Phase 1 of the user study.
Fabric material Amplification factor (SD) Frequency (SD) [Hz]

1 216.25 (56.04) 26.25 (10.69)
2 98.33 (15.33) 45.42 (8.65)
3 133.33 (9.24) 93.58 (42.01)
4 210.00 (35.24) 120.83 (75.61)
5 150.83 (59.21) 293.33 (40.53)
6 110.42 (21.22) 57.08 (9.16)
7 146.25 (48.55) 85.83 (28.75)
8 131.67 (35.29) 173.33 (24.25)

Fig. 9. Mean values and 95% confidence intervals of the likelihood of being
perceived as real for the ground-truth and the generated signal.

the electrovibrational stimulus with the carrier-wave frequency
above 240 Hz tends to require a higher amplitude to be per-
ceivable by human subjects [1,56], so the material#5 (F10-Silk)
obtained a large amplification factor (150.83), which is the third-
largest, for the clear tactile perception of the electrovibrational
stimulus. We also notice that the physical sample of material#4
(F9-Linen) involves a set of regular patterns with different weav-
ing techniques (see Fig. 7-4), resulting in the bumpy sensation
when the fingertip is sliding across the boundary between differ-
ent patterns. Such bumpy sensation needs a large amplification
factor value (210.00) for electrovibration rendering. Moreover,
these weaving patterns result in different levels of roughness and
slipperiness among different areas of the fabric sample. This can
be reflected by the obtained carrier-wave frequency with high
variance (SD = 75.61) across different participants, as we observe
that different participants tend to touch and explore different re-
gions of the physical sample for material#4 (F9-Linen) and adjust
the electrovibration stimulus according to the areas they touch.
Therefore, we can see that the tactile perception of the fabric
texture could be largely dependent on the person who is touching
the texture, and the location where the person is touching. In our
experiment, we electrovibrationally render the frictional signal
for each participant based on the parameters (i.e. the carrier-
wave frequency and the amplification factor) that he/she adjust to
match with the physical sample in Phase 1, to ensure the realness
of the tactile signal rendering for each participant.

Fig. 9 shows the percentage of the real/ground-truth and the
enerated signals being identified as the actual signal recorded
rom the real physical material (i.e. being more closed to the real
hysical sample) for each type of fabric material. In the following
iscussion, we define the percentage of one particular type of
ignal being identified to be the actual pre-recorded/ground-truth
ignal as its likelihood of being perceived as real. The average
ikelihood of the ground-truth signal being perceived as real is
469
47.92% while it is 52.08% for the generated signal on average. We
perform a two-way repeated-measures ANOVA on the likelihood
of being perceived as real considering the factors of stimuli and
material type for the trained materials and the unseen/new types
of fabric materials, separately. The statistical results demonstrate
that the type of stimuli (generated signal vs real signal) has a
minor effect on the likelihood of being perceived as real for the
trained fabric materials (F(1, 11) = 0.044, p = 0.838, η2

p = 0.003; the
likelihood for the ground-truth signal: 49.17% vs the likelihood for
the generated signal: 50.83%) and the unseen/unknown materials
(F(1, 11) = 0.508, p = 0.491, η2

p = 0.004; the likelihood for the
ground-truth signal: 45.83% vs the likelihood for the generated
signal: 54.17%). This suggests that virtual textures created by the
generated frictional signals are perceived to be similar to the
textures created by the pre-recorded signals, with the generated
signals being slightly more likely to be perceived as real. Fur-
thermore, the two-way repeated-measures ANOVA on the overall
data show no interactive effects of these two factors (stimuli ×

material type: F(7, 77) = 0.584, p = 0.767, η2
p = 0.050). This further

indicates that the material type does not significantly affect the
likelihood for either the ground-truth or the generated signals
being perceived as real.

We also notice three types of materials (F10-Silk, N1-Fiber
and N3-Silk) rendering by generated signals yielding slightly but
not significantly higher performance than pre-recorded signals
in the discrimination experiment. During the experiments, some
participants commented that it was difficult for them to distin-
guish the generated and the pre-recorded signals for F10-Silk and
N3-Silk. As both of these materials are silk which yields relatively
lower frictional-coefficient signals and could be considered to
be smooth, the confusion in these materials could be due to
the glass-made touch screen being smooth by nature. N1-Fiber
also demonstrates that the participants tended to consider the
generated signal slightly more likely to be the real signal. This
could be due to the various prior experiences among the limited
number of experiment subjects. We will involve a larger group of
participants in future studies.

7. Discussion: Limitations and future work

The technical experiments show that our model can gener-
ate frictional signals that are visually and statistically similar to
the ground-truth signal. The user studies also suggest that the
participants could not distinguish the real/ground-truth signals
and the generated signals in tactile simulation and rendering. We
also explore the capability of generalizing our trained model to
three types of unseen/new data. The signal visualization and the
user-perception experiment show that our model can generate
the frictional signals that are close to the ground truth for the
three selected types of unseen materials. On the other hand, we
observe a few limitations in our approach.

7.1. Biased signal generation

We notice the generation results of F3-Leather demonstrate
the minimal overlapping with its ground-truth data in the
waveform-based frictional-coefficient signal plot (i.e., the third
row of Fig. 3), the largest RMSE (0.0515), and the largest ratio
of RMSE/mean (10.21%). This might be due to the fact that
F3-Leather yields a considerable difference from the other mate-
rials, causing the inter-class imbalance in the model training [66].
The problem of data imbalance may further bias the predic-
tive/generative capability of the deep neural network, leading
to the worse performance on the minority class than the other
classes [67]. We also perform the Dynamic Time Warping (DTW)
algorithm upon the ground-truth frictional-coefficient data of
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Fig. 10. The less successful signal generation for new data in the Linen category.
he input textured image shows the regular weaving style with the smaller
ariance of frictional coefficients signals (the blue curve), but the generated
esult (the orange curve) shows the bumpy change on tactile properties with the
imilar attribute of linen fabrics. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)

0 selected materials. The average warping distance between
3-Leather and the other materials (5.96, SD = 3.16) is larger
han the average distance within the other non-F3-Leather ma-
erials (2.99, SD = 1.93), indicating a large difference between
3-Leather and the others. The t-SNE visualization (Fig. 4) also
hows that the cluster of F3-Leather (i.e. the slate blue marks) is
ar from the other clusters. This might bias the generative model
o treat F3-Leather as the minority class and negatively affect
he signal generation performance for F3-Leather. On the other
and, the generated signals for F3-Leather still show a similar
endency with the ground-truth signals. This suggests that our
odel tends to learn the displacement-based changing trend of

he frictional-coefficient data which plays an essential role in the
actile simulation of the fabric texture [12]. In addition, F9-Linen
lso shows the larger RMSE and MAE values (0.043 and 0.034)
nd the ratio of RMSE/MAE and average signals (9.23%/7.48%),
e suppose it might be because of the higher variance of the

rictional-coefficient signals of F9-Linen, which could cause the
ismatch of the phase between the generated and ground-truth
ata, possibly increasing the RMSE and the MAE values.

.2. Generalization

We observe some less successful cases of frictional signal gen-
ration for unseen materials. Fig. 10 illustrates one unsuccessful
xample of generating the frictional signal for the Linen category.
he generated frictional signal shows a largely different trend and
evel compared to the ground-truth signal. One possible reason is
hat the textile pattern might affect the haptic properties within
he same category of fabrics. Fig. 3 shows a large amplitude
hange on the frictional signal of F9-Linen, which might be due
o the physical patterns woven on the textiles. Compared to F9-
inen, the linen material in Fig. 10 shows a more gentle variance
ith possibly fewer physical bumps during the weaving process.
herefore, we will improve the generative model with additional
upervisions, such as the textile style, to further enhance its
obustness and generalization.

We also observe that the glass surface of the electrovibration
actile display renders the smooth materials (e.g., silk) better
han the rough/bumpy materials (e.g., velvet or linen). This is
ecause the bumpy geometric patterns on certain fabric materials
ffer additional types of tactile sensation, such as pressure on
he finger surface. Therefore, rendering realistic texture based on
oncurrent tactile feedback would be an exciting and challenging
roblem. Also, as we adopt the GAN structure, the latent space
ould also be interpolated to acquire new haptic textures to mod-
fy material roughness sensations for virtual texture design [68],
hich would be another potential future work.
470
Fig. 11. The generated spectrograms and waveform-based frictional-coefficient
signals of noisy or denoised fabric textured image with different noise variances.
The first column represents the input fabric image and the second and the
third columns show the generated spectrogram and waveform-based frictional
coefficients data.

7.3. Limited dataset

The original HapTex database [22] contains both visual and
tactile data among 120 types of fabric materials but we only
selected 10 types for our model training. This is because some
visual images were contaminated (e.g., some patterns marked by
pen), and some recorded frictional signals were not valid (e.g., too
short measurement distance). Such limitation in the dataset may
lead to the vulnerability of our model when the input image
is affected by noise. To this end, we test our model upon the
images under different noise levels by adding different levels of
Gaussian noise (i.e., the same mean value µ = 0 with different
variances σ = 1/10/100) into the visual images for Material#1
(F1-Velvet) as the inputs for our generative models. The results of
the noisy image input in Fig. 11 show that our model can generate
considerable quality of the tactile signal to a certain extend. We
also experiment with our model by denoising the noisy images
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sing Gaussian filters, and the results of the denoised input in
ig. 11 shows that the common denoising approach (i.e. Gaussian
iltering) could improve the generative results with more similar
rends as the ground-truth data, and smaller RMSE values. To fur-
her enhance the robustness of the presented generative model,
e will construct a more comprehensive database with high-
uality visual and tactile data. In addition, the current database is
imited by collecting the data only when users sliding their fingers
cross the fabric surface from left to right. In order to increase
he diversity of frictional data, we intend to collect the frictional-
oefficient signals upon different tools, sliding directions, and
ositions.

.4. Random noise in the latent space

We add a randomized 50-dimensional noise vector in the la-
ent space when training our GAN model, which could introduce
pecific variances in the latent representation and reinforce the
obustness of the decoder. This structure could also improve the
erformance of the generative model [69]. In our work, we also
ested the influence of the randomized noise vector in our gen-
rative model. Specifically, we added different levels of random
oise (i.e., the same mean value µ = 0 with different variances
= 1/10/100) to the latent space in our model for two different

abric materials (F1-Velvet) and F2-Cotton). Fig. 12 demonstrates
hat inducing different levels of random noise into the latent
pace has no significant effect on the generated spectrograms and
he values of RMSE.

.5. Parameter determination

While our experiments showed that our generative models
ould generate the frictional-coefficient signals rendered on the
lectrovibrational surface to simulate the touch feeling of fabric
extures, the process still requires the user to manually adjust
he rendering parameters (e.g., the amplification factor or carrier
ave frequency). However, it might be tedious to acquire these
ecessary parameters for different textures and users. During the
xperiments, we observe that the tactile perception of electro-
ibrationally rendered fabric texture partially depends on the
inger-contact location and the individual haptic sensitivity of
he participant. Therefore, it would be optimal to dynamically
ontrol the amplification factor and the carrier-wave frequency
o match the texture of physical fabric samples. In the future, we
ill investigate the design of the regression model for personal
rediction of the rendering parameters for different locations and
ypes of materials.

.6. Gender, prior experiences, and handedness

Our user study aims to explore users’ tactile perception of fab-
ic texture simulation based on our generated and pre-recorded
rictional-coefficient signals. We involved female and male
articipants with different prior experiences and right-/left-
andedness. The previous research [70] shows that the tactile
oughness discrimination threshold was unrelated to age or gen-
er. Our user study involves 5 females and 7 males, and the
verage likelihoods of the ground-truth signal being perceived as
eal are 46.42% (males) and 50.00% (females), separately. One-
ay ANOVA also shows that there is no significant difference
etween the two genders (F(1, 10) = 0.253, p = 0.626). In addition,
lthough two of the participants had prior experience on electro-
ibration tactile surfaces, they reported that the usage was just 1
r 2 times and had no previous experience on texture simulation
f the electrovibration tactile display. These prior experiences
ay not yield significant effects on the tactile perception in
471
Fig. 12. The generated spectrograms and waveform-based frictional-coefficient
signals when adding with different noise variances. (a)-Velvet and (b)-Cotton.
The first column represents the input textured image and the second and the
third columns show the generated spectrogram and waveform-based frictional
coefficients data.

our experiment. Lastly, Ardila et al. [71] also show that the
right/left-handedness might not place a significant effect on the
humans’ roughness estimation. Therefore, we can assume that
gender, prior experiences and right/left-handedness could not
significantly affect our experimental results. On the other hand,
involving a large number of participants further increases the
reliability of the experimental results.

8. Conclusion

In this paper, we present a GAN-based framework to generate
the frictional signals from the fabric texture images, for the tactile
simulation on the electrovibration tactile display. The frictional-
signal-generation model takes the visual fabric images as the
input and generates the waveform of the displacement-based
frictional coefficients of the fabric surface. The experimental re-
sults show that our model could generate the amplitude spec-
trograms and the waveforms of the frictional signals similar to
the ground-truth data pre-recorded from the corresponding real
physical materials. We also conduct user studies to validate the
usage of the generated frictional signals on tactile simulation of
fabric material. The results demonstrate that the users could not
discriminate the generated and the real frictional signals being
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endered on the electrovibration tactile display, suggesting the
ffectiveness of our model for tactile material simulation.
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