
International Conference on Artificial Reality and Telexistence
Eurographics Symposium on Virtual Environments (2020)
F. Argelaguet, M. Sugimoto, and R. McMahan (Editors)

FrictGAN: Frictional Signal Generation from Fabric Texture
Images using Generative Adversarial Network

Shaoyu Cai1,3 Yuki Ban2 Takuji Narumi3 and Kening Zhu†1

1School of Creative Media, City University of Hong Kong, Hong Kong
2Graduate School of Frontier Sciences, The University of Tokyo, Japan

3Graduate School of Information Science and Technology, The University of Tokyo, Japan

Figure 1: The main concept of frictional signals generation using the GAN-based method. Users could input the RGB fabric images to the
Generator Network, and it will synthesize the frictional signals that could be applied on the electrostatic tactile display to simulate the haptic
texture surfaces of the input fabrics.

Abstract
The electrostatic tactile display could render the tactile feeling of different haptic texture surfaces by generating the frictional
force through voltage modulation when a finger is sliding on the display surface. However, it is challenging to prepare and
fine-tune the appropriate frictional signals for haptic design and texture simulation. We present FrictGAN, a deep-learning-
based framework to synthesize frictional signals for electrostatic tactile displays from fabric texture images. Leveraging GANs
(Generative Adversarial Networks), FrictGAN could generate the displacement-series data of frictional coefficients for the
electrostatic tactile display to simulate the tactile feedback of fabric material. Our preliminary experimental results showed
that FrictGAN could achieve considerable performance on frictional signal generation based on the input images of fabric
textures.

CCS Concepts
• Computing methodologies → Generative adversarial network; • Human-centered computing → Virtual reality;

1. Introduction

Recently, due to the development of haptics, various types of haptic
feedback are rendered on different haptic devices, such as electro-
static feedback [BPIH10], vibrotactile feedback [Gal12], and ther-
mal feedback [ZPC∗19] [NKZ20]. These devices could be inte-
grated with Virtual Reality (VR) to improve the immersion and
realness in virtual environments [ZCHW19] [CKNZ20] [CWZ18].

† Corresponding author: keninzhu@cityu.edu.hk

Electrostatic tactile displays [BPIH10] could provide frictional tac-
tile feedback on the fingertips of users, to simulate different surface
properties, such as the roughness of fabric textures. This is usually
achieved by modulating the lateral force on the touch surface. This
technique could be potentially applied for texture simulation and
rendering in VR [ZLY∗20].

However, the process of designing the appropriate signal for the
frictional force between the finger and electrostatic tactile surface
could be challenging due to two main reasons. Firstly, the lateral
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forces are usually dependent upon the frictional properties on the
real physical texture surface, such as the frictional coefficient, the
normal pressure force, and the displacements. However, many tex-
ture surfaces show irregular changes in lateral force during the fin-
ger sliding. This makes it difficult to build a general model for
the frictional simulation and prediction for a textured surface. Sec-
ondly, while it could be feasible to use the recorded data to mod-
ulate tactile feedback on the electrostatic tactile display, it is often
time-consuming for data collection.

To eliminate these gaps, we propose FrictGAN, a signal-
generation framework based on Generative Adversarial Networks
(GANs) [GPAM∗14]. We defined the frictional signals as the fric-
tional coefficients on the finger-contact positions of the electro-
static tactile surface. We converted the frictional coefficients to the
displacement-frequency of wave-format, which could be treated as
the 2D images. We then trained a conditional-GAN-based deep
neural network [IZZE17], to generate the amplitude spectrogram
for representing the frictional coefficients according to the fin-
ger displacements on the fabric surface. Fig. 1 shows the flow
of FrictGAN, which takes the RGB image of the textured sur-
face and generates the amplitude spectrogram of the frictional sig-
nals to represent the frictional coefficients of the surface. The se-
ries of frictional coefficients further controls the electrostatic tac-
tile display to control the lateral force corresponding to the fin-
ger displacement. Our preliminary experimental results showed
that FrictGAN could generate a series of considerable amplitude
spectrograms in the displacement-frequency domain. Our imple-
mentation of source code and data set are available at: https:
//github.com/shaoyuca/FrictGAN.

2. Related Work

With the emergence of electrostatic/electrovibrational tactile sur-
faces [BPIH10], data-driven texture modeling and rendering has
attracted an increasing amount of research interests. Osgouei et
al. [OSKC18] proposed an inverse dynamics model for generat-
ing the actuation signals to mimic real textures on an electrovibra-
tion display. As an extended work, the same group [OKC20] con-
ducted user studies to compare the rendered lateral forces with the
real signals, which showed the approach could improve the quality
of virtual texture rendering on the electrovibration display. Jiao et
al. presented HapTex [JZW∗19] to retrieve the friction coefficients
from the recording frictional data while a finger sliding on the
textured surface. While the aforementioned works could achieve
considerable performance on virtual texture rendering with pre-
recorded frictional signals, they often required the ready signals.
However, the signal-recording procedure could be high-cost and
time-consuming.

Recently, generative models showed high performance on high-
dimensional data (e.g., images or videos) generation. Several prior
research works showed conditional GANs owned effective gen-
eration performances on cross-modal contents, such as from im-
ages [NHS∗19], texts [ZXL∗17], and audio [CSDX17] to images.
As a preliminary attempt, Ujitoko and Ban [UB18] presented Tact-
GAN, for vibrotactile signal generation from the textured-surface
images or label attributes using GANs. Based on the dataset created
by Strese et al. [SSIS16], TactGAN defined the acceleration-based

vibrotactile signals as the amplitude spectrogram, which is a 2D
image and trained a GAN-based pipeline to synthesize the spectro-
gram from the RGB texture images or the material attributes. Sim-
ilarly, with the same dataset, Li et al. [LLZS19] proposed a GAN-
based method to learn visual-tactile representation by identifying
the category labels of input images to guide tactile signals gener-
ation. Liu et al. [LGZ∗20] built image-to-tactile cross-modal per-
ception based on CycleGAN [ZPIE17] framework and developed a
portable device for visually impaired people. Our work shows the
feasibility of generating frictional signals from the texture images
using GANs.

3. Method and Implementation

3.1. FrictGAN Architectures

As shown in Fig. 2, FrictGAN consists of a generator G and a
discriminator D commonly adopted in the pix2pix-based model
[IZZE17]. The generator G contains two parts, an encoder net-
work and a decoder network. The encoder network takes the
size of 1024× 1024× 3 RGB image as input, and output a 128-
dimensional latent vector. The decoder could synthesize the size
of 257×11 amplitude spectrum from the latent space that includes
the concatenation of the latent vector and a random 50-dimensional
noise vector. We adopted the structure of conditional GAN [MO14]
and passed spectrograms together with the input RGB image data
to the discriminator D to distinguish the real and fake/generated
amplitude spectrograms based on the conditional input. The final
generated spectrogram is converted into the wave format by the
Griffin-Lin algorithm [GL84].

We adopted Convolutional Neural Networks (CNN) in both the
generator and the discriminator. For the generator G, we imple-
mented the U-net structure [RFB15] to build a series of skip con-
nections between the layer of encoder and decoder networks. For
each layer in the generator, we adopted convolution/deconvolution,
batch normalization, and ReLU units; three dropout units were
added in the last three layers of the encoder. To generate the corre-
sponding output size of spectrograms, we proposed a well-designed
encoder-decoder structure through down-/up-sampling manipula-
tion in our architecture. After the encoder and decoder processing,
we added a ReLU function in the last layer of generator to generate
the final outputs. For the discriminator D, we used the PatchGAN
structure [IZZE17], and input a channel-wise concatenated vector
with the size of 257×11×4 from cropped texture image and gen-
erated/real amplitude spectrum and output a 30×1×1 patch. Each
layer in the discriminator consists of convolution, batch normal-
ization, and LeakyReLU units. After finishing the training proce-
dure, we removed the discriminator and only used the generator
to synthesize the final amplitude spectrogram and converted it to
the wave-format frictional signals for rendering on the electrostatic
tactile display.

3.2. Objective Functions

We adopted a conditional GAN to learn the mapping from the im-
age data x and random noise vector z to the amplitude spectrogram
y. The objective mapping of the model is as below:

G : x,z→ y. (1)
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Figure 2: The Network structure of FrictGAN. The left part (1) is a sample of training fabric texture images passed into the Generator
(2) composed by the Encoder and Decoder parts. The Generator (2) is a U-net-based structure with skip connections between the Encoder
and Decoder layers. We added a 50-dimensional random noise vector (green) in the latent space (3) to increase variance for the Generator
training. We concatenated the input RGB fabric image (1) and the spectrogram data (4) and (5) to the Discriminator (7), which will guide
the Generator (2) to synthesis the final generated spectrum (4). We also included the L1 loss (6) between the real and generated spectrum.
After the training stage, we removed the Discriminator (7) and only fed the image data to the Generator (2) to generate the spectrogram and
used Griffin-Lim algorithm [GL84] to convert the spectrogram data to the waveform frictional coefficients signals (8) for electrostatic tactile
displays rendering.

In the original GAN [GPAM∗14], the proposed objective function
may cause gradient vanishing [AB17]. To solve the problem, we
implemented the Wasserstein GAN (WGAN) [ACB17] for more
stable generator G and discriminator D training, so we replaced
the original GAN loss as the Wasserstein GAN loss LWGAN . The
objective function of WGAN is:

LWGAN =−Ex∼p(x),y∼p(y) [D(y|x)]+Ex∼p(x),ỹ∼p(ỹ) [D(ỹ|x)] (2)

We also included the Manhattan distance, which is L1 distance, as
our pixel-wised loss, so the loss function becomes:

L = LWGAN +λLL1 (3)

In this equation, L is our final objective loss, and LL1 is the pixel-
wised L1 loss between the real and generated spectrograms. λ is
the hyperparameter, which was set to 100 in our preliminary exper-
iments.

4. Experiments and Results

We conducted several experiments to measure and evaluate the
FrictGAN model properties for frictional signals outputs from fab-
ric texture images. The experimental results showed that our Frict-
GAN model could generate frictional coefficients data closed to the
pre-recorded data from the real fabric surfaces in the displacement-
frequency tactile spectrum.

We used HapTex dataset [JZW∗19], which includes the visual
data and the frictional data for 120 types of fabrics. The frictional
data were recorded while a user sliding his/her finger on the real
fabric textures. The dataset presents the relationships between the
frictional coefficients and the displacements with wave formats for
each fabric surface. To this end, we computed the size of 257 ×

11 amplitude spectrogram data from wave-format frictional coef-
ficients signals using Short-time Fourier transform (STFT) with a
512-hamming window and a 128-hop size and took the RGB fabric
texture images as the visual domain for the input of the FrictGAN.

In our preliminary experiments, five types of fabrics (see Fig.
3) were selected for training to verify the feasibility of FrictGAN.
We adopted the following data-augmentation strategies on our im-
age and spectrogram data. Firstly, we used a size of 1024 × 1024
sliding window to move horizontally and crop the 2362 × 2362
original fabric image with the offset of two pixels, so finally we
acquired 669 RGB images for each fabric. Referring to the corre-
sponding information between image pixels and frictional coeffi-
cients data in [JZW∗19], we also implemented a similar manipula-
tion on frictional coefficients data according to the sliding-window
movements on RGB images to build one-to-one corresponding re-
lations between images and amplitude spectrograms. Considering
the displacement range of frictional coefficients data during the
data collection stage, we chose the previous 600 pairs of RGB im-
ages and frictional coefficients signals. We then converted the fric-
tional coefficients signals to amplitude spectrograms through STFT
for each type of fabric material. We then randomly selected 100
pairs of RGB images and spectrograms for the validation set and
the same amount of data for the testing set. Thus, we totally ac-
quired 2000, 500, 500 pairs of RGB images and spectrograms for
training, validation, and testing databases, separately.

We implemented our networks with the Tensorflow framework
on an Nvidia Geforce GTX 2080 Ti GPU. We used the RMSprop
optimizer with a batch size of 2, and both of the learning rates for
the generator and discriminator were 5e−5 in our experiment. Fig.
3 (a) shows 5 kinds of input fabric texture RGB images, Fig. 3
(b) shows generated amplitude spectrograms, and Fig. 3 (c) shows
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Figure 3: The preliminary results of FrictGAN. (a) The input tex-
ture images of fabrics; (b) Generated spectrograms based on Frict-
GAN from input fabric texture images; (c) The ground truth (real)
spectrograms

the ground truth spectrum. We then used the Griffin-Lim algo-
rithm [GL84] to convert the frequency-domain spectrograms to the
wave-format signals for the lateral forces rendering on the electro-
static tactile display. We also computed Mean Squared Error (MSE)
values with reference frictional coefficients for each type of fabric
individually. The MSE values of these 5 kinds of fabrics (from top
to down in Fig. 3) were 0.006, 0.005, 0.014, 0.005 and 0.005, sep-
arately, averagely 0.035.

5. Limitations and Future Work

We also identify some limitations in our preliminary experiments.
Currently, we only tested five kinds of fabrics for our FrictGAN
model; the diversity of generated frictional signals is restricted, lim-
iting the generalization and scalability of the FrictGAN model. We
will include more types of fabrics in our dataset for training in the
future. In addition, for the waveform signals, only calculating the
MSE values could not support the acceptable results from the Frict-
GAN model, so we intend to conduct ablation studies among dif-

ferent generative models by evaluating some parameters, such as
Geometry Score [KO18]; or compare with previous frictional force
generative models [JWV18], to quantitatively investigate the per-
formance of different methods.

As electrostatic tactile displays need to modulate the driven volt-
ages for rendering the lateral force, as our future work, we will
add an additional data-driven regression model to predict the cor-
relation coefficients between the driven voltages and the frictional
coefficients. This is to render high-fidelity tactile feedback for the
virtual fabric surfaces. Therefore, we will conduct user studies to
collect human users’ subjective ratings on the realness of the gen-
erated frictional signals.

In addition, our method not only reproduces haptic textures
from known subjects but also allows users to create new hap-
tic textures from real physical textures or materials. Some related
works [HAJ19] [UBH20] proved the capability to produce or ren-
der new haptic surfaces using machine learning methods. In our
future work, we will explore the feasibility of creating new virtual
fabric textures with haptic properties from real-life textures.

Last but not least, VR is one of the most important applications
for haptic rendering. In the future, we will integrate the electro-
static tactile display and the FrictGAN model with VR devices to
improve the immersive experience of the simulated textures in the
virtual environment.

6. Conclusion

In this paper, we present FrictGAN, a deep-learning-based gener-
ative method for cross-modal fictional-signal synthesis. FrictGAN
was designed based on the GAN structure, taking the RGB fabric
images as the input and the distribution of the frictional coefficients
of the fabric surface as the output. We also conducted some prelim-
inary experiments to evaluate the effectiveness of our model, and
the results showed that FrictGAN could generate visually similar
amplitude spectrograms compared to the real spectrum.
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