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Figure 1: The main concept of our multi-modal tactile signal generation framework using the transformer-based network. In our
system, the (b) transformer-based generative model takes the RGB visual image, and users’ scanning parameters (i.e., the position
coordinates of the input stroke, the applied normal forces and the scanning velocities) as (a) multi-modal visual-tactile input, and
accordingly generates (c) the sequence of dynamic contact acceleration signals for (d) stylus-based texture interaction in VR/AR.

ABSTRACT

Current haptic devices can generate haptic texture sensations through
replaying the recorded tactile signals, allowing for texture interaction
of different materials in virtual reality (VR) and augmented
reality (AR). As humans enable to feel different texture sensations
under various scanning parameters (i.e., applied normal forces,
scanning velocities and stroking directions/positions) on the material
surface towards the same texture, such methods cannot support
rendering natural haptic textures under various scanning parameters.
To this end, we proposed a deep-learning-based approach for
multi-modal tactile signal generation leveraging the framework of
a transformer-based network. Our system takes the visual image of
a material surface as the visual data and the acceleration signals with
the scanning parameters induced by the pen-sliding movement on the
surface as tactile data through a transformer-based generative model
with the multi-modal feature embedding module for acceleration
signals synthesis. We aim to synthesize dynamic acceleration signals
based on the images of material surfaces and the users’ scanning
states to create natural and realistic texture sensations in VR/AR.

Index Terms: Human-centered computing—Human computer
Interaction (HCI)—Interaction devices—Haptic devices

1 INTRODUCTION

Recently, some haptic devices have shown promising ability to
render realistic haptic textures, such as tool-based haptic device [5] or
barehand-based touchscreen [1], which potentially allows for texture
simulation of materials in VR/AR to improve the realism of virtual
scenes. Typically, when a user seeks to render the virtual texture for a
real object, its surface haptic information (e.g., roughness) should be
acquired to control haptic devices for texture simulation. However, it
is still challenging to acquire high-quality tactile signals for materials
texture simulation in VR/AR.
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While providing virtual textures through recorded tactile signals
(e.g., contact acceleration signals or frictional-coefficient signals) can
achieve realistic texture interaction to a large extent, such the approach
ignores those scanning parameters (i.e., scanning velocities, applied
forces, and directions), which limits to reproduce natural texture sen-
sations under different scanning conditions. Culbertson et al. [5] pre-
sented a data-driven method to generate the acceleration signals varied
with users’ scanning velocities and forces based on autoregressive
model sets for texture simulation. However, such an approach may not
be practical for those anisotropic material surfaces. On the other hand,
considering visual information of textured surfaces, Cai et al. [2] pro-
posed a GAN-based image-to-friction generation framework to gener-
ate positional-based frictional signals from images for haptic texture
simulation on the electrovibration tactile display. However, the uni-
modal visual input (i.e., images) excludes the temporal information
of users’ input, which may harm the interactive experience in VR/AR.

Motivated by these previous works, one potential idea is to
adopt multi-modal information that includes spatial and temporal
contents (i.e., visual texture images and users’ scanning parameters)
to generate tactile signals for realistic haptic texture rendering. In
addition, some deep-learning-based approaches, especially the
transformer-based generative methods [7], achieve considerable
performance on multi-modal data generation (e.g., images, texts,
and time-series signals). Hence, for the multi-modal tactile signal
generation task, the visual textured images and users’ scanning
parameters can be treated as the visual input data and the tactile
input data, respectively, and the contact acceleration signals as the
tactile output data. Our goal is to build the mapping between the
multi-modal visual-tactile input and the tactile output data.

In this work, we developed an end-to-end transformer-based
framework for tactile signal synthesis, to create realistic texture
interaction in virtual and augmented reality. As shown in Fig. 1, our
model takes the multi-modal visual-tactile input: visual images, posi-
tion coordinates, normal forces and scanning velocities, and outputs
the accordingly acceleration signals for vibrotactile texture rendering.
‘We modified the basic transformer model [7] to adapt our multi-modal
data sequence input and added an additional multi-modal embedding
layer for multi-modal feature fusion. We built an augmented visual-
tactile haptic data set based on the HaTT database [4] for training
our proposed model and conducted a preliminary test to validate the
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Figure 2: The framework of our tactile signal generation model.

feasibility of multi-modal dynamic tactile signal generation. The gen-
erated dynamic acceleration signals can further control the Haptuator
embedded into the stylus to produce vibrotactile textures of virtual
objects on a display surface (e.g., the tablet in Fig. 1 (d)) in VR/AR.

2 DATA REPRESENTATION AND NETWORK DESCRIPTION

In our work, we aim to build the algorithmic mapping between
the multi-modal visual-tactile input (visual images x, scanning
velocities v, positions p and normal forces f) and the tactile output
(acceleration signals a), which can be simplified as: G(x,v,p,f) —a
where G represents the generative model. In HaTT database [4], the
stroke data in any direction has been recorded as a list of positional
points with a 10 kHz sampling rate, where the scanning speed is
implicitly included in the sequence of the points, so we adopted
the similar data format of Sketch-RNN [6] to represent our users’
input stroke data. Specifically, we represented the users’ scanning
input data as a 4-d vector: [py,py, fu.s], where the first two elements
(px, py) represented the coordinate offsets in the 2-d coordinate
system and the third element f, indicated the applied normal force
at the current coordinates; the last element s was a binary value
representing whether the pen was lifted away from the display.

Fig. 2 shows the proposed network structure of our multi-modal
transformer-based tactile signal generation model consisting of an
encoder block and a decoder block. Unlike the traditional transformer
structure applied in natural language processing (NLP) [7], we
replaced the input/output embedding layers with linear layers to fit
our input size of the encoder/decoder, and a linear projection layer to
reshape the final output from the decoder into the target size. In partic-
ular, we added a self-attention layer, a multi-modal embedding layer
and a feed forward layer in the latent space (the dotted line block in Fig.
2) to adapt multi-modal visual-tactile data fusion [3]. Specifically,
we first built a 2-d CNN-based structure followed by a linear layer
to extract the features of the image data, and then implemented the
self-attention calculation for the encoder’s output to produce another
feature vector, both two feature vectors for the channel-wise con-
catenation in the multi-modal embedding layer. Then we passed the
concatenation into a feed forward layer and connected to the decoder.
Finally, the decoder generated the final output from the multi-modal
fusion input from the latent space and the previous output.
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Figure 3: The preliminary results of tactile signal generation for
aluminium material. The input data include (a) textured image, (b)
positional sequence and (c) force sequence; the output data is
(d) acceleration signals (The orange and blue lines represent the
generated and recorded (real) signals, respectively).

3 PRELIMINARY RESULTS

We preliminary evaluated our proposed multi-modal transformer-
based network for tactile signal generation. We selected the
aluminium texture shown in Fig.3 (a) as our tested sample and
adopted the sliding window-based data augmentation strategy [2]
for the multi-modal data set creation with L; loss as our training loss
function. To optimize the calculated performance, we split the tem-
poral data sequence as the independent sequence with 200-ms long,
which includes a maximum of 2000 data points for each generated
acceleration signals sequence. Fig.3 (d) demonstrates the result of
generated acceleration signals under the visual textured image as
spatial input and sliding stroke data including the positional sequence
and force sequence as temporal input. The Root-Mean-Squared-Error
(RMSE) value of the selected sample was 0.0082 (SD = 0.0023).

4 CONCLUSION AND FUTURE WORK

We presented a multi-modal transformer-based framework for
stylus-based haptic texture modelling and rendering in virtual and
augmented reality. In particular, our proposed network taking the
multi-modal visual-tactile input, captures the temporal and spatial
features from users’ scanning parameters and material textured
surfaces to generate dynamic contact acceleration signals for vibro-
tactile texture rendering. In our future work, we aim to quantitatively
and qualitatively evaluate the performance of generated acceleration
signals and explore the effectiveness of our added modules (e.g.,
multi-modal embedding layers) through several ablation studies. In
addition, we will conduct user studies to evaluate the realness of gen-
erated virtual haptic textures and further integrate our haptic texture
modelling and rendering framework with VR/AR devices to improve
the user experience of texture simulation in virtual environments.
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